BEIJING-FANUD 0*i***D**/0*i*-Mate D

简明联机调试资料

用途

ID 号: 日期: 文件使用的限制以及注意事项等

文件版本更新的纪录

修订日期	版本号	文件名称	修订内容	修订人

内容提要

第一节:硬件连接

简要介绍了 0iD /0i Mate D 的系统与各外部设备(输入电源,放大器, I/O 等)之间的总体 连接,放大器(αi系列电源模块,主轴模块,伺服模块,βis系列放大器,βiSVPM)之 间的连接以及和电源,电机等的连接,和RS232C 设备的连接。最后介绍了存储卡的使用方 法(数据备份,DNC 加工等)以及 I/O Link 轴的连接的。

第二节:系统参数设定

简单介绍了伺服参数初始化,基本参数的意义和设定方法,各种型号伺服电机及主轴电机的 代码表,有关模拟主轴及串行主轴的注意点,主轴常用的参数说明,常用的 PMC 信号表, 模具加工用(0iMD)机床高速高精度加工参数设定以及高速高精度加工参数设定的快捷方 法。

第三节: 伺服参数调整及 SERVO GUIDE 调试步骤

详细介绍伺服参数初始化步骤,伺服参数优化调整,全闭环控制的参数设定及调整,振动抑制 调整,以及带距离码光栅尺的参数设定方法。

详细介绍了用 FANUC 伺服调试软件[SERVO GUIDE]对相关伺服参数调整的步骤,以及典型 参数的设定范围和调整步骤。

第四节: PMC 调试步骤

简单介绍了由电脑中编辑完成的梯形图和系统中的 PMC 梯形图之间的转换,不同类型的 PMC(如: SA1/ SB7 格式的要转换为 PMC/PMC-L 的格式)之间的转换方法,各种 I/O 单 元及模块的地址分配方法。有关梯形图的编程(比如操作面板,刀库等的处理)参照我公司 编写的《梯形图编程应用手册》

第五节: 刚性攻丝调试步骤

介绍了刚性攻丝的编程格式,所需要的基本配置,相关信号,与刚性攻丝有关的梯形图,相关 参数调整,相关报警说明。

第六节: 主轴定向

使用外部开关信号, 编码器, 或者主轴电机内部位置传感器定向的连接说明, 参数说明, 调 试步骤。

第七节: 主轴 CS 轮廓控制

讲述主轴 CS 轮廓控制(主轴 C 轴控制)的参数设定方法及相关 PMC 信号的处理。

第八节: I/O Link 轴控制

详细介绍 I/O Link 轴控制的典型应用的参数设定, I/O 信号的处理。以及系统相关参数设定, 并以刀库, B 轴为例介绍了 PMC 的编辑及典型的参数设定。

第九节: 以太网和数据服务器功能

较详细的介绍了以太网及数据服务器的应用,参数设定,与电脑的通讯设定方法,以及常用的通讯软件的操作。

第十节:数据备份

简单介绍了调整后的需要备份保存的机床数据,以及备份操作方法步骤。

备注:以上几个部分基本都是简单的对系统连接的介绍,如果在实际的调试过程中遇到本说明书中没有提到的内容,可以参考相应的系统连接说明书(硬件)/(功能)、系统参数说明书、伺服/主轴规格说明书或参数说明书,如果遇到难以解决的技术问题,可与我公司技术部联系,联系电话:010-62984734,传真:010-62984741。网上答疑:Http://WWW.BJ-FANUC.COM.CN,

北京发那科机电有限公司 技术部 2009-5

第一节	硬件连接	1
1.1	核对	1
1.2	硬件安装和连接	1
1.3	伺服/主轴放大器的连接	4
1.4	模拟主轴的连接	9
1.5	I/O 的连接	9
1.6	急停的连接	. 11
1.7	电机制动器的连接	. 12
1.8	电源的连接	. 12
1.9	放大器外形图	. 14
1.10	分离型检测器的连接	. 15
1.11	其它设备的安装和连接	. 17
1.	11.1 和电脑的连接	.17
1.	11.2 使用 M-CARD 备份参数/加工程序等	.18
1.	11.3 用存储卡进行 DNC 加工	20
1.12	I/O Link 轴的连接	. 20
第二节 🤋	系统基本参数的设定	. 22
2.1	启动准备及基本参数设定概述	. 23
2.	1.1 启动准备	23
2.	1.2 基本参数设定概述	23
2.2	与轴设定相关的 NC 参数初始设定	. 25
2.	2.1 准备	25
2.	2.2 初始设定	26
2.	2.3 NC 再启动	31
2.3	与轴设定相关的 NC 参数一览	. 31
2.4	FSSB 的初始设定	. 34
2.	4.1 FSSB 设定概述	34
2.	4.2 FSSB 设定	35
2.	4.3 FSSB 相关报警及信息	37
2.5	伺服的初始设定	. 38
2.	5.1 初始设定流程	
2.	5.2 伺服设定步骤	39
2.6	伺服参数的初始设定	. 46
2.	6.1 初始设定步骤	46

2.	6.2 伺服参数一览	47		
2.7	与高速高精度相关的 NC 参数的初始设定			
2.	7.1 初始设定步骤	48		
2.	7.2 高精度设定的 NC 参数一览	48		
2.8	与主轴相关的 NC 参数的初始设定	50		
2.	8.1 串行主轴初始设定步骤	50		
2.	8.2 串行主轴设定画面项目一览	51		
2.	8.3 串行主轴使用的注意事项	52		
2.	8.4 模拟主轴使用的注意事项	52		
2.	8.5 主轴电机代码	53		
第三节 🖻	利用 Servo Guide 软件进行伺服参数的调整	54		
3.1	概述	54		
3.2	Servo Guide 软件的设定	54		
3.3	参数画面	56		
3.4	图形画面	67		
3.5	程序画面	68		
3.6	高精度参数设定的快捷方法			
3.7	HRV3 使用注意事项			
第四节 I	PMC 调试步骤	83		
4.1	存储卡格式 PMC 的转换	83		
4.2	不同类型的 PMC 文件之间的转换	86		
4.3	I/O 模块的设置	88		
4.4	PMC 各个地址说明			
4.	4.1 信号表	96		
4.	4.2 系统用内部继电器	97		
4.	4.3 编辑梯形图说明	98		
4.5	操作变更	102		
第五节	列性攻丝	107		
5.1	概要	107		
5.2	系统的配置	107		
5.3	多主轴控制的刚性攻丝	112		
5.4	基于其他路径的主轴刚性攻丝	112		
5.5	刚性攻丝相关的控制信号(PMC 地址)	113		
5.6	刚性攻丝 PMC 程序的实现	114		
5.7	与刚性攻丝相关的部分参数设定	116		
5.8	刚性攻丝的诊断号	118		

5.9 利用伺服优化软件调试刚性攻丝	
5.10 刚性攻丝的报警号	
第六节 主轴定向	
6.1 概述	
6.2 使用外部接近开关(1转信号)	
6.2.1 αi/βi 放大器连接	
6.2.2 α放大器连接	124
6.2.3 参数设定	
6.2.4 外部开关类型的参数说明	
6.2.5 连接示意图	126
6.3 使用位置编码器	127
6.3.1 连接示意图	127
6.3.2 参数	127
6.4 使用主轴电机内置传感器	
6.4.1 连接示意图	
6.4.2 参数	
6.4.3 主轴和电机之间非 1: 1 连接	
6.5 梯形图编制说明	
6.6 有关地址信号和参数	
第七节 Cs轮廓控制	
7.1 简介	
7.2 系统配置	
7.3 PMC 信号	
7.4 PMC 程序实现(参考)	
7.5 参数设置	
7.6 Cs轮廓控制轴坐标建立功能	
7.7 报警与信息	
第八节 I/O Link 轴控制	
8.1 概述	139
8.2 硬件连接	
8.2.1 接口	139
8.2.2 地址分配	140
8.2.3 硬件连接	140
8.3 参数设定	
8.3.1 初始设定	143
8.3.2 关于使用绝对式脉冲编码器的参数设定	144

8.	3.3 相关参数说明	144
8.4	梯形图编制	
8.4	4.1 信号说明	145
8.4	4.2 外围设备控制接口(DRC=0)	146
8.4	4.3 直接命令接口 (DRC=1)	146
8.4	4.4 接口的切换	147
8.4	4.5 外围设备控制接口的功能说明	147
8.4	4.6 外围设备控制命令的形式	
8.4	4.7 外围设备控制的控制步骤	
8.5	I/O Link 轴动作实现范例	
8.6	附录	
第九节 :	以太网和数据服务器	
9.1	内嵌式以太网	
9.2	以太网和数据服务器软硬件的比较	
9.1	2.1 快速以太网板和快速数据服务器板	
9.1	2.2 以太网功能和数据服务器功能	
9.3	以太网功能	
9.	3.1 以太网功能及其相关软件	
9.	3.2 以太网功能在 CNC 上的设定	
9.	3.3 以太网功能应用举例	
9.4	数据服务器功能	
9.4	4.1 实现数据服务器功能的基本工作模式	
9.4	4.2 CNC 和电脑的连接	
9.4	4.3 关于 FTP 文件传输协议	
9.4	4.4 使用电脑作为 FTP 传输的服务器端	
9.4	4.5 使用 CNC 作为 FTP 传输的服务器端	171
9.5	Windows XP 下 FTP 服务的使用和设定	
9.:	5.1 使用 Windows XP 自带的 IIS	
9.:	5.2 使用 Serv-U	
9.6	CNC 系统和 PC 的连接调试步骤和技巧	
9.	6.1 在本地确认 FTP 服务器工作正常	
9.	6.2 检查网络连接是否正常	
9.	6.3 确认 CNC 设置并联机调试	
第十节	数据备份	
10.1	概述	
10.2	CNC 数据类型	

10.3	操作	乍步骤…		183
10.	3.1	参数设	定	183
10.	3.2	SRAM	数据备份	183
10.	3.3	系统数	据的分别备份	185
10.4	用	存储卡进	行 DNC 加工	187

第一节 硬件连接

目前北京 FANUC 出厂的 0iD/0i-Mate-D 包括加工中心/铣床用的 0iMD/0i-Mate-MD 和车床用的 0iTD/ 0i-Mate-TD, 各系统一般配置如下:

系统型号		用于机床	放大器	电机
0 iD	0 iMD	加工中心,铣床等	α i 系列的放大器	α iI, α iS 系列
最多5轴			β i 系列的放大器	β iI, β iS 系列
	0 iTD	车床	α i 系列的放大器	α iI, α iS 系列
			βi系列的放大器	βiI, βiS系列
0i Mate D	0 i Mate MD	加工中心, 铣床	β i 系列的放大器	β iS 系列
最多4轴	0 i Mate TD	车床	βi系列的放大器	β iS 系列

注意:对于βi系列,如果不配 FANUC 的主轴电机,伺服放大器是单轴型或双轴型,如果配 主轴电机,放大器是一体型(SVSPM),下面详细介绍基本调试步骤。

1.1 核对

按照订货清单和装箱单仔细清点实物是否正确,是否有遗漏、缺少等。如果不一致,请 立即与 FANUC 联系。

1.2 硬件安装和连接

- 1) 在机床不通电的情况下,按照电气设计图纸将 CRT/MDI 单元, CNC 主机箱,伺服放 大器, I/O 板,机床操作面板,伺服电机安装到正确位置。
- 2) 基本电缆连接。(详细说明请参照硬件连接说明书)

如: 机床操作面板, I/O 卡, I/O Link 轴有些厂家可能没有配备。 由上述图中可以看到, 硬件连接与 0iC 相比基本一致。

3) 总体连接介绍:

如下图所示

- 注意: 1.FSSB 光缆一般接左边插口。
 - 2.风扇,电池,软键,MDI等在系统出厂时候都已经连接好,不要改动,但可 以检查是否在运输过程中有松动的地方,如果有,则需要重新连接牢固,以 免出现异常现象。
 - 3. 电源线输入插座[CP1], 机床厂家需要提供外部+24V 直流电源。具体接线为 (1-24V,2-0V,3-地线), 注意正负极性不要搞错。
 - 4. RS232接口是和电脑接口的连接线,一共有两个接口。一般接左边,右边(232-2 口)为备用接口。如果不和电脑连接,可不接此线(使用存储卡就可以替代 232 口,且传输速度和安全性都要比 232 口优越)。
 - 6. 串行主轴/编码器的连接,如果使用 FANUC 的主轴放大器,这个接口是连接放大器的指令线,如果主轴使用的是变频器(指令线由 JA40 模拟主轴接口连接),则这里连接主轴位置编码器。对于车床一般都要接编码器,如果是 FANUC 的主轴放大器,则编码器连接到主轴放大器的 JYA3,注意这两种接法的信号线是不同的,参照下图:

上述为编码器连接到 NC 的 JA7A, PZ-15, *PZ-17。

上述为编码器连接到主轴放大器的 JYA3 上, PZ-1, *PZ-2。

可见,编码器的信号线有两种,取决于连接到系统,还是放大器,如果错了,则位置信号正常,而Z相信号会有问题。会出现车螺纹(乱扣)等异常。
7. 对于 I/O Link [JD51A](相当于 0iC 的 JD1A)是连接到 I/O 模块或机床操作面板的,必须连接,注意必须按照从 JD51A 到 JD1B 的顺序连接,也就是

从 JD51A 出来,到 JD1B 为止,下一个 I/O 设备也是从这个 JD1A 再连接到 另一个 I/O 的 JD1B,如果不是按照这个顺序,则会出现通讯错误或者检测 不到 I/O 设备。

8. 存储卡插槽(在系统的正面),用于连接存储卡,可对参数,程序,梯形图 等数据进行输入 / 输出操作,也可以进行 DNC 加工。

1.3 伺服/主轴放大器的连接

以下是以 0iD 配 a i 放大器 (带主轴放大器)为例的连接图

主轴指令线,接系统的 JA7A, 伺服指令线(光缆),连接到系统轴卡的 COP10A CX37,断电检测回路,一般不接线。

各放大器之间通讯线 CXA1A 到 CXA1B,从电源到主轴连接是水平连接(没有交叉), 而从主轴到伺服放大器,再到后面的伺服放大器都是交叉连接,如果连接错误,则会出现电 源模块和主轴模块异常报警,以下为详细的连接图。

- 注意:1) PSMi, SPMi, SVMi(伺服模块)之间的短接片(TB1)是连接主回路的直流 300V 电压用的连接线,一定要拧紧,。如果没有拧的足够紧,轻则产生报警,重 则烧坏电源模块(PSMi)和主轴模块(SPMi)。
 - 2) AC200V 控制电源由上面的 CX1A 引入,和下面的 MCC/ESP (CX3/CX4) 注意一定不要接错接反,否则会烧坏电源板。
 - 3) PSM 的控制电源输入端 CX1A 的 1,2 接 200V 输入(下面为 1),3 为地 线,而 CX3(MCC)和 CX4(ESP)的连接如下图所示:

CX3(MCC)的连接方法(一定不要接错)

CX1A(AC200V)连接

CX4(ESP)的连接方法

4) 对伺服放大器是βi系列,带主轴的放大器是 SPSVM 一体型放大器,连接如下图所示。注意 a) 24V 电源连接 CXA2C(A1-24V,A2-0V)。b)TB3 (SVPSM的右下面)不要接线。c) 上部的两个冷却风扇要自己接外部 200V 电源。d) 三个(或两个)伺服电机的动力线放大器端的插头盒是有区别的,CZ2L(第一轴),CZ2M(第二轴),CZ2N(第三轴)分别对应为 XX,XY,YY,一般我公司提供的动力线,都是将插头盒单独放置,用户自己根据实际情况装入,所以在装入时要注意一一对应。

上述图中的 TB2 和 TB1 不要搞错,TB2(左侧)为主轴电机动力线, 而 TB1(右端)为三相 200V 输入端,TB3 为备用(主回路直流侧端子)。 一般不要连接线。如果将 TB1 和 TB2 接反,则测量 TB3 电压正常(约 直流 300V),但系统会出现 401 报警。

其中, CX38, CX38 是连接断电保护回路, 一般不用连接。

5)伺服电机动力线和反馈线都带有屏蔽,一定要将屏蔽做接地处理,并且 信号线和动力线要分开接地,以免由于干扰产生报警。如下所示:

6) 对不带主轴的βi伺服放大器系列,放大器是单轴型或双轴型,没有电源模块。分 SVM1-4/20, SVM40/80 和两轴 SVM2-20/20 三种规格。主要区别是电源和电机动力线的连接。连接电缆时一定要看清楚插座边上的标注,如下表所示。

放大器型号	插座号	标记	意义
SVU1-4/20	CZ7-1	L2/L1	三相电源输入
		*/L3	
	CZ7-2	DCN/DCP	放电电阻
	CZ7-3	V/U	电机动力线
		*/W	
SVU1-40/80	CZ4(前)	* /L3	三相电源输入
		L1/L2	
	CZ5(中)	* /V	三相电机动力线
		W/U	
	CZ6(后)	R1/RC	放电电阻
		RE/RC	
SVU2-20/20	CZ4(前)	* /L3	三相电源输入
		L1/L2	
	CZ5L(中)	* /V	三相电机动力线
	CZ5M(后)	W/U	
	TB(上)	DCP/	放电电阻
		DCC	

连接图如下(以 SVM1-40/80 为例,其他类型的可以参照此图连接)

放电电阻的接法:

如果不需要外接放电电阻,则 CXA20 的 1-2 短接,而 CZ6 的短接处理不同,需要短接 A1-A2,如果错误的短接了 B1-B2 则电机不能正常运行。如下:

对于 SVM1-4/20 和 SVM2-20/20 的放大器,如果不接外置放电电阻,则 CZ7-2 或 TB 不需要短接处理,只短接过热信号就可以了。

1.4 模拟主轴的连接

机床厂家选择变频器作为主轴控制,而不使用 FANUC 的主轴放大器,可以选择模拟主轴接口。系统向外部提供 0-10V 模拟电压,接线比较简单,注意极性不要接错,否则变频器不能调速。

上述 ENB1/ENB2 用于外部控制用,一般不使用。

1.5 I/O 的连接

I/O包括机床操作面板用的 I/O卡、分布式 I/O单元、手脉、PMM(I/O LINK 轴控制)等。

注意:对于手脉接口,0iC 在控制器的 I/O 单元上或操作面板 I/O 上都有,可以 根据需要连接到哪个接口,在 PMC 的模块地址分配时要指定。

对于标准操作面板,所有连接线都已经连好了,除了急停按钮的连接可能需要按照下面的第6部分修改,其他都不需要重新连接。对于0iC用I/O单元,输入点按公共端分为

两种:一种为 0V 公共,一种公共端可选择 0V 或 24V。如下: 1) 0V 公共型:

内部 24V(B01) 通过各输入点(开关量)引入,不要接入任何其它 24V 电源。

2) 公共端可选择型:

根据需要,公共端(COM4)可以接 0V,也可以接 24V,上述表示公共端接 0V 的例

子,与上述的 1)效果一样。COM4 一定要正确连接,否则,则出现一组状态同时发 生变化等异常现象。

3) 输出信号接法:

输出信号需要一个外部 24V 电源,电源的+24V 端连接 I/O 板的 DOCOM。0V 端连接 I/O 输出点的继电器负端。不要直接连接输出点。

1.6 急停的连接

注意:上述图中的急停继电器的第一个触点接到 NC 的急停输入 (X8.4), 第二

个触点接到放大器的电源模块的 CX4(2,3)。对于β is 单轴放大器, 接第一个 放大器的 CX30(2,3 脚),注意第一个 CX19B 的急停不要接线。 注意:所有的急停只能接触点,不要接 24V 电源。

1.7 电机制动器的连接

如下图所示(电源可以选择直流 24V,或者 220V 通过变压器变为 29V 再全波整流为直 流 24V:

外部24V DC电源

ON/OFF电路B

-1/0单元等

通电前,断开所有断路器,用万用表测量各个电压(交流 200V,直流 24V)正常之后,再依次接通系统 24V,伺服控制电源(PSM)200V,24V(βi)。最后接通伺服主回路电源(3相 200V)。

1.9 放大器外形图

α i (PSM-SPM-SVM3)

β i-SVM SVM-4,20型 (β i 2,4,8 电机用)

β i-SVPM (一体形)

SVM-40,80(βi12,22电机用)

注意:1)伺服电机动力线是插头,用户要将插针连接到线上,然后将插针插到插座上,U,V,W顺序不能接错,一般是红,白,黑顺序,如下所示。

2)放大器上可以安装绝对式编码器用电池(6V),用于保存各轴零点位置,对于αi 电机,还要选择绝对编码器,对于βi 电机,编码器都是绝对式,但电池盒需要另 外购买。

1.10 分离型检测器的连接

CNC 伺服放大器模块 伺服卡 光缆 COP10B COP10A 00-00 COP10A COP10B COP10A COP10B 光镜 COP10A 最大 2 轴: 0i Mate-TI 最大3轴: 0i Mate-M 最大4轴: 0i TB/MB 分离型检测器接口单元1 COP108 JF101 DD Linear scale axis 1 COP10A JF102 DB Linear scale axis 2 24VDC CP11A JF103 bB Linear scale axis 3 JF104 DB Linear scale axis 4 CNF1 JA4A DB Π 分离型检测器用电池

对于全闭环系统,需要连接分离型检测器接口

上图中的 CP11A 为 24V 电源输入,需要自己准备外部电源(可以与 NC 公用), JF101-JF104 为光栅反馈连接,一般需要自己焊接插头,插头信号如下所示:

对于 A/B 相的光栅尺,按如下图焊接,如果电机移动方向与反馈脉冲极性相反,可 将 PCA 和 PCB 对调, *PCA 和*PCB 对调(即 1,3 对调,2,4 对调)就可以了。

对于串行光栅尺或者串行编码器,按下图连接:

上述两种连接使用的接口板对于 A/B 相或者串行光栅都是通用的

1.11 其它设备的安装和连接

1.11.1 和电脑的连接

* OiD/Oi-Mate D 可以通过 232 口和电脑相连,实现 DNC 加工,如下所示:

注: 1. 上图中的 232 通讯电缆需要由用户自己焊接,推荐的接线图如下:

2. 为防止电脑的串口漏电对 NC 的接口烧坏,要在接口上加光电隔离器,

尽量不使用 232 接口进行数据传输和 DNC 加工,而应当使用存储卡接 口更方便,传输速度快,不需要另外的传输软件,且不会烧坏接口, 存储卡按照如下方法正确连接:

存储卡插入时,注意标签朝右边,轻轻插入,以免损坏插针,对于小适 配器的存储卡,可以盖上保护盖。在拔出的时候,需要轻轻按下上方 的按钮,不能直接强行拔出卡。

1.11.2 使用 M-CARD 备份参数/加工程序等

使用存储卡(PCMCIA CARD)可对参数、加工程序,梯形图,螺补、宏变量 等数据进行方便的备份。这些数据可分别备份,同时可以在计算机上直接进行 编辑(梯形图除外,需经 FANUC 的编程软件进行转换)。

1) 首先要将 20#参数设定为 4 表示通过 M-CARD 进行数据交换

参数	(SETTING)	00001 N00018
0020	I∕O CHANNEL	4
0021		0
0022		0
0023		0
0024		0
	uuu uuu uuu 17•01	S 0 T0000
(NO検索	玄)(接通:1)(断開:0)(+輎	俞入)(輸入)

注意:参数 110#0 需要设定为 0 (如果设定为 1,表示 I/O 通道分别由 20-23 号参数来指定)。

2) 在编辑方式下选择要传输的相关数据的画面(以参数为例) 按下软健右侧的[OPR](操作),对数据进行操作。

EDIT ****	*** ***	17:13:51	
(参数)〔	診断)	PMC)(系統	〕((操作))

按下右	侧的扩展建	[▶]						
EDIT (**** ***)(REA	*** 1' D)(PUNCH	7:22:24)()()			
[READ]表示从 M-	CARD 读取数打	居,[PUN	CH]表示打	巴数据	备份到 N	1-CARE)
EDIT (**** * [,])(** ***)(All	17:22)(:39)(NON-	-0)		
[ALL]코	表示备份全部	部参数,[NON-	0]表示仅得	备份非零的	的参数	[
EDIT	**** * \/	** *** \/	17:	22:53	١r	EVEC	<u>۱</u>	
ι	Д	Л	Л	CAN	Д	EXEU)	
执行即	可看到[EXI	ECUTE]闪烁,	参数保存到	到存储卡。	₽。			

 从 M-CARD 输入参数时选择[READ])使用 M-CARD 备份梯形图 按下 MDI 面板上[SYSTEM], 依次按下软键上[PMC], [PMCMNT], [I/O]。 在[装置]一栏选择[M-CARD] 中文界面设定见下图:

PNC	齴			PHC1	停止	6.5.8
			PHC 数据输入	/出		
	PMC	= PMC1				
	装置	= 存储卡	/ Flash Ro	〒/ 软躯 / 其	Ē	
	功能 数据类型 文件号 文件名	= 写 = 顺序程序 = PHC_PRH.0	读取 / 比射 / 参約	文 / 删除 / 数 / 信息/	格式化	
	状态					
			A>_	atat ate tet	18:48:57	
< 1	信号	I ZOLNK	报警		(操作)	1+1
					01411-1	

注: 使用存储卡备份梯形图时,

DEVICE 处设置为 M-CARD

FUNCTION 处设置为 WRITE(当从 M-CARD--→CNC 时设置为 READ) DATAKIND 处设置为 LADDER 时仅备份梯形图也可选择备份梯形图参数 FILE NO.为梯形图的名字(默认为上述名字)<u>也可自定义名字输入@XX</u> (XX 为自定义名子,<u>当使用小键盘时没有@符号时</u>,可用#代替) 注意在读入梯形图后,需要将[装置]栏处设置为 F-ROM 把传入的梯形 图程序存入到系统 F-ROM 中。

1.11.3 用存储卡进行 DNC 加工

- 1)首先将 I/O CHANNEL 设定为4(按上述方法设定),参数 138#7=1。
- 2)将加工程序拷贝到存储卡里(可以一次拷贝多个程序)。
- 3)选择[RMT]方式,程序画面,按右软件键[▶],找[CARD],显示存储卡 里面的文件列表。选择需要加工的程序序号,按[DNC-CD],然后再按 [DNC-ST](如果找不到[DNC-CD],需要按几次软件键[▶],直到找到该 软键为止)。
- 4) 按机床操作面板上的循环启动按钮, 就可以执行 DNC 加工了。

1.12 I/O Link 轴的连接

I/O Link 轴和 PMC 轴是不同的, PMC 轴占用 NC 轴, 比如: 0iMC 最多四个轴, 可以 在这四个轴里选择任意一个轴作为 PMC 轴处理。但 I/O Link 轴不占用 NC 轴, 比如增 加一个定位轴(第五轴), 就可以使用 I/O Link 轴来实现。一般使用带 I/O Link 选项的 βi 放大器作为 I/O Link 轴。连接图如下:

1) 与 NC 的连接:

 放大器的 MCC (CX29), ESP (CX30), DCOH (CXA20) 连接方法同前面普通的 βi放大器, JA72 的连接如下所示:

其中: DIC 为公共端,必须与 0V (12, 14, 16) 短接,*RILK 为高速互锁或回零 减速信号(通过参数切换,*+OT,*-OT 为硬件超程信号,HDI 为跳步信号(一般不使用)。

3) 手轮连接(为选择功能),由于 I/O Link 手轮和 CNC 的手轮信号不同,所以不能和 CNC 公用一个手轮,但可以通过转接板(自己做或者购买)进行连接。连接如下:

	手轮			β	i 放大器		
0V	+5V	HA	*HA	JA3	54		
		HB	*HB	1	HA	11	
				 2	HB	12	0V
				3	*HA	13	
				4	*HB	14	0V
				5		15	
				6		16	0V
				7		17	
				8		18	+5V
				9	+5V	19	
				10		20	+5V

如果自己做一个转换电路,可以使用 SN75113 芯片将 HA, HB 信号转换为 HA, *HA, HB, *HB

第二节 系统基本参数的设定

本节就启动 FANUC Series 0i-MODEL D/FANUC Series 0i-Mate MODEL D 时所需的参数设定进行说明。

本节由下列内容构成。

- 1 启动准备及基本参数设定概述
- 2 与轴设定相关的 NC 参数初始设定
- 3 FSSB 的初始设定
- 4 伺服的初始设定
- 5 伺服参数的初始设定
- 6 与高速高精度相关的 NC 参数的初始设定
- 7 与主轴相关的 NC 参数的初始设定

2.1 启动准备及基本参数设定概述

2.1.1 启动准备

当系统第一次通电时,需要进行全清处理,(上电时,同时按 MDI 面板上 RESET+DEL)。

- ▶ 全清后一般会出现如下报警:
 - 100 参数可输入 参数写保护打开(设定画面第一项 PWE=1)。
 - 506/507 硬超程报警 梯形图中没有处理硬件超程信号 设定 3004#5OTH 可 消除
 - 417 伺服参数设定不正确,重新设定伺服参数,具体检查诊断 352 内容, 根据内容查找相应的不正确的参数(见伺服参数说明书),并重新进行伺服参数初始化。
 - 5136 FSSB 放大器数目少,放大器没有通电或者 FSSB 没有连接,或者放大器 之间连接不正确, FSSB 设定没有完成或根本没有设定(如果需要系统 不带电机调试时,把 1023 设定为-1,屏蔽伺服电机,可消除 5136 报警)。
- 根据需要,手动输入基本功能参数(8130-8135)。检查参数,8130的设定是否正确(一般车床为2,铣床3/4)。

2.1.2 基本参数设定概述

系统基本参数设定可通过参数设定支援画面进行操作。参数设定支援画面是以

- 通过在机床启动时汇总需要进行最低限度设定的参数并予以显示,便于机床执行启动操作
- 通过简单显示伺服调整画面、主轴调整画面、加工参数调整画面,更便于进行 机床的调整

为目的用来进行参数设定和调整的画面。

参数设定支援画面显示方法:

通过以下步骤可显示该画面。

操作步骤:按下功能键[SYSTEM]后,按继续菜单键[+]数次,显示软键[PRM 设定]。按下软键[PRM 设定],出现参数设定支援画面。

各项目概要

起动项目中,设定在启动机床时所需的最低限度的参数。

起动 项目一览

项目名称	内容
轴设定	设定轴、主轴、坐标、进给速度、加减速参数等 CNC 参数
FSSB (AMP)	显示 FSSB 放大器设定画面
FSSB (轴)	显示 FSSB 轴设定画面
伺服设定	显示伺服设定画面
伺服参数	设定伺服的电流控制、速度控制、位置控制、反间隙加速的 CNC 参数
伺服增益调整	自动调整速度环增益
高精度设定	设定伺服的时间常数、自动加减速的 CNC 参数
主轴设定	显示主轴设定画面
辅助功能	设定 DI/DO、串行主轴等的 CNC 参数

调整项目显示用来调整伺服、主轴、以及高速高精度加工的画面。

<u>调整项目一览</u>

项目名称		内容	
伺服调整	显示伺服调整画面		
主轴调整	显示主轴调整画面		
AICC 调整	显示加工参数调整	(先行控制/AI轮廓控制)	画面

标准值设定

通过软键[初始化],可以在对象项目内所有参数中设定标准值。

注释

1 初始化只可以执行如下项目。

- 轴设定
- 伺服参数
- 高精度设定
- 辅助功能
- 2 进行本操作时,为了确保安全,请在急停状态下进行。
- 3 标准值是 FANUC 建议使用的值,无法按照用户需要个别设定标准值。
- 4 本操作中,设定对象项目中所有的参数,但是也可以进行对象项目中各组的参数设定,或个别设定参数。 详情见本节后面内容。

标准值设定操作步骤如下说明:

在参数设定支援画面上,将光标指向要进行初始化的项目。按下软键[操作],显示如下软键 [初始化]。

参数设定支援	00000	N00000
菜单 1. 起刀	<mark>轴设定</mark> FSSB(AMP) FSSB(轴) 伺服设定 伺服履参数 伺服増益设定 主轴 主轴	
2. 调整	1	
A)^		
	S 01	0000
MDI **** ***	*** 14:47:38	
FSSB	PRM设 (鼻作) ┣+
(选择)	初始化	

按下软键[初始化]。软键按如下方式切换,显示警告信息"是否设定初始值?",

参数	设定支	援		00000 N00	000
菜单	单 1.	起刀		<mark>轴设定</mark> FSSB(AMP) FSSB(im) 何服设定 伺服服增设定 高精推设定 主轴助功 補助	
	2.	调 整		何服调整主轴调整	
A) ^					
是否	设定初	始值	?	S 0 T 0 0 0	
MDI	****	***	***	14:50:35	
<	<u> </u>		Ť	取消(执行	\supset

按下软键[执行],设定所选项目的标准值。通过本操作,自动地将所选项目中所包含的参数 中提供标准值的所有参数设定为标准值。

不希望设定标准值时,按下软键[取消],即可中止设定。另外,没有提供标准值的参数,不 会被变更。

2.2 与轴设定相关的 NC 参数初始设定

初始设定步骤

2.2.1 准备

进入参数设定支援画面,按下软键[(操作)],将光标移动至"轴设定"处,按下软键[选择],出现参数设定画面。此后的参数设定,就在该画面进行。

轴设定(基本)		00000	N00000
01001#0 INM			<mark>0</mark>
01013#1 ISC	Х		0
	Y		0
	Z		0
01005#0ZRN	Х		1
	Y		1
	Z		1
指定直线轴最小移动	单位: 0:MI	M∕1:IN	СН
A) ^			
	S	0 T	0000
MDI **** ***	14:58:	59	
<u>√</u> [号 捜 索 〕初 始 化 _GF	₹初期]		1入(

2.2.2 初始设定

在参数设定画面上进行参数的初始设定。在参数设定画面上,参数被分为几个组,并被 显示在每组的连续页面上。

每组进行初始设定,下面示出操作步骤。

注释

- 1 下面说明中的"设定值例",是初始设定时的参考值。最终的设定值,应根据机床的特性、使用方法进行调整并决定。
- 2 下面说明中的"设定值例",是指所有轴的设定单位为 IS-B(NO.1013#1="0"),且 是公制输入(NO.0000#2="0")的情形。
- 3 有关各参数的详情,请参阅参数说明书。

①基本组

①-1 标准值设定

进行基本组的参数标准设定。

按下 PAGE UP/PAGE DOWN 键数次,显示出基本组画面,而后按下软键[GR 初期]。

轴设定(基本)	0	2000 N00000
01001#0 INM		0
01013#1 ISC	Х	0
	Y	0
	Z	0
01005#0ZRN	Х	1
	Y	1
	Z	1
指定直线轴最小移动	边单位: 0:MM/	1:INCH
A)	C	0 0000
MD1 **** *** ***	14:58:59	
号 搜 索 │初 始 化 📿 🤅	R初期	<u> </u>

画面上出现"是否设定初始值?"提示信息。 按下软键[执行]。

▲ 取消 执行 ↓

至此,基本组参数的标准值设定完成。

注释

- 1 无论从组内的哪个页面上选择[GR 初期],对于组内的所有页面上的参数,均进行标准值设定。
- 2 有的参数没有标准值。即使进行了标准值的设定,这些参数的值也不会被改变。
- 3 根据标准值设定,有时会出现报警(PW0000)"必需关断电源",并切换到报警画面,但是,此时不必立即切断电源。请按照(1)准备中的说明,重新显示出参数 设定画面,进入下一步骤。

没有附加轴时,请进入步骤<①-3 没有标准值的参数设定>。

注释

1 在步骤<①-1 标准值设定>中进行的标准值设定中,有的参数只在基本轴(M系列: 第1~第3轴、T系列:第1~第2轴)上设定标准值。

另1~~第3抽、1 尔列: 另1~~第2 抽)上以足称推狙。

在步骤<①-2 附加轴的参数设定>中,手动进行这些参数的附加轴(M系列:第4

轴以后的轴、T系列: 第3轴以后的轴)部分的设定。

对于附加轴,设定下列参数。

1020 各轴的程序轴名称

各轴

M 系列					ΤŽ	系列	
轴名称	设定值	轴名称	设定值	轴名称	设定值	轴名称	设定值
U	85	А	65	Y	89	В	66
V	86	В	66	А	65	С	67
W	87	С	67				

1020 各轴的程序轴名称

各轴

设定值	含义
0	回转轴(非3个基本轴,也非他们的平行轴)
5	X轴的平行轴
6	Y轴的平行轴
7	Z轴的平行轴

①-3 没有标准值的参数设定

注释

1 仅仅依靠步骤<①-1 标准值设定>进行的标准值设定,有的参数尚未设定标准值。

在步骤<①-3 没有标准值的参数设定>中,手动地进行这些参数的设定。

2 当输入参数号,按下软键[搜索号]时,光标就移动到所指定的参数处。

● 若是直线轴,则设定输出单位公制系统/英制系统

	直线轴的最小移动单位为	所有轴
1001#0	0: 公制系统(公制机床系统)	通用
	1: 英制系统(英制机床系统)	

● 设定最少设定单位和最小移动单位。

	设定设定单位、最小移动单位	
1013#1	0: IS-B	各轴
	1: IS-C	

	设定单位、最小移动单位
IS-B	0.001mm、0.001deg 或 0.0001inch
IS-C	0.0001mm、0.0001deg 或 0.00001inch

● 使用无挡块参考点返回时,设定下列参数。

	无挡块参考点返回	
1005#1	0: 无效	各轴
	1: 有效	

● 对于各轴设定直线轴/回转轴。

	1006#0 0 1	 重线轴或回转轴 : 直线轴 : 回转轴 : 回转轴 : □转轴 : □	各轴
--	---------------	--	----

● 对于各轴设定半径/直径指令。

	各轴的移动指令为	
1006#3	0: 半径指令	各轴
	1: 直径指令	

● 对各轴设定手动返回参考点的方向。

	手动返回参考点方向为	
1006#5	0: 正方向	各轴
	1: 负方向	

● 有关外置脉冲编码器的使用进行设定。

	是否使用外置脉冲编码器	
1815#1	0: 不使用	各轴
1: 使用

就机械位置和绝对位置检测器的位置的对应进行设定。

	机械位置和绝对位置检测器的位置对应	
1815#4	0: 尚未结束	各轴
	1: 已经结束	

设定位置检测器是否为绝对位置检测器

	位置检测器为	
1815#5	0: 非绝对位置检测器	各轴
	1: 绝对位置检测器	

● 设定下列参数

参数	设定值例	含义	类型
1825	5000	伺服位置环增益	各轴
1826	10	到位宽度	各轴
1828	7000	移动中位置偏差极限值	各轴
1829	500	停止时位置偏差极限值	各轴

(2) 主轴组

②-1 标准值设定

进行主轴组的参数标准值的设定。

以与<①基本组>的<①-1标准值设定>相同的步骤进行设定。

②-2 没有标准值的参数设定

设定下列参数

• 就主轴电机的种类进行设定

	主轴电机的种类为	
3716#0	0: 模拟电机	各轴
	1: 串行主轴	

③ 坐标组

③-1 标准值设定

进行坐标组的参数标准值的设定。

以与<①基本组>的<①-1标准值设定>相同的步骤进行设定。

③-2 没有标准值的参数设定

设定下列参数

参数	含义	类型	数据单位

1240	第1参考点的机械坐标	各轴	设定单位
1241	第2参考点的机械坐标	各轴	设定单位
1320	存储行程检测1的正向边界的坐标值	各轴	设定单位
1321	存储行程检测1的负向边界的坐标值	各轴	设定单位

④进给速度组

④-1 标准值设定

进行进给速度的参数标准值的设定。

以与<①基本组>的<①-1标准值设定>相同的步骤进行设定。

④-2 没有标准值的参数设定

设定下列	参数		
参数	设定值例	含义	类型
1410	1000	空运行速度	所有轴
1420	8000	快速移动速度	各轴
1421	1000	快速移动速度倍率 F0 速度	各轴
1423	1000	JOG 进给速度	各轴
1424	5000	手动快速移动速度	各轴
1425	150	返回参考点时的 FL 速度	各轴
1428	5000	返回参考点速度	各轴
1430	3000	最大切削进给速度	各轴

⑤ 进给速度组

设定下列参数

● 设定切削进给、空运行、JOG 进给时的加减速的类型。

	切削进给、空运行的加减速为	
1610#0	0: 指数函数型加减速	各轴
	1: 插补后直线加减速	
	JOG 进给的加减速为	
1610#4	0: 指数函数型加减速	各轴
	1: 与切削进给相同加减速	

● 设定下列参数

参数	设定值例	含义	类型
1620	100	快速移动的直线型加减速时间常数	各轴
1622	32	切削进给的加减速时间常数	各轴
1623	0	切削进给插补后加减速的 FL 速度	各轴
1624	100	JOG 进给的加减速时间常数	各轴
1625	0	JOG 进给的指数函数型加减速的 FL 速度	各轴

2.2.3 NC 再启动

断开 NC 的电源,而后再接通。通过上述操作,与轴设定相关的 NC 参数的初始设定到此结束。

注释

1 要移动伺服轴时,除了上面的参数设定外,还需要设定下面的信号。有关各信号的 详情,请参阅连接说明书(功能篇) 地址 符号 信号名称 *IT G8.0 所有轴互锁信号 *ESP G8.4 紧急停止信号 *SP G8.5 自动运行停止信号 *JV G10, G11 手动进给速度倍率信号 G12 *FV 进给速度倍率信号 G114 *+L1~*+L5 硬件超程信号 G116 *-L1~*-L5 硬件超程信号 G130 *IT1~*IT5 各轴互锁信号 2 FSSB 的设定方法,本节中使用"手动设定 1"。在使用"手动设定 1"时,不必使 用参数设定支援画面上的"FSSB (AMP)"以及"FSSB(轴)"的项目。 "手动设定1"中,可以使用的功能和设定受到限制,有关该限制和FSSB设定的详 情,请参阅连接说明书(功能篇)的"FSSB设定"章节。

2.3 与轴设定相关的 NC 参数一览

下面为与轴设定相关的 NC 参数一览。有关各参数的详情,请参阅参数说明书。

组	项目名	参数号	简要说明	初始操作设定值
基本	INM	No.1001#0	直线轴的最小移动单位	
			0: 公制机械系统	
			1: 英制机械系统	
	ISCx	No.1013#1	设定最小设定单位(指令单	
			位)	
			0: IS-B 1: IS-C	
	ZRNx	No.1005#0	在没有确定原点的状态下	0
			执行自动运行(G28 以外)	
			时	
			0:发出报警(PS0224)	
			1: 不发出报警	
	DLZx	No.1005#1	无挡块参考点返回	
			0: 无效(各轴) 1: 有效	
			(各轴)	
	ROTx	No.1006#0	直线轴和回转轴的设定	
			0: 直线轴 1: 回转轴	

DIAx	No.1006#3	各轴的移动量的指令的设 定 0: 半径指定	
ZMIx	No.1006#5	1: 且径指定 各轴参考点返回方向 0: 正向 1: 负向	
ROAx	No.1008#0	回转轴 360 度循环显示功 能	1
RRLx	No.1008#2	 0: 无效 1: 有效 是否以每旋转一轴的移动 量来圆整相对坐标 0: 不予圆整 1 圣以圆整 	1
AXIS NAME	No.1020	各轴的程序名称	M系列: X(88),Y(89),Z(90) T系列: X(88) Z(90)
AXIS ATTRIBUTE	No.1022	各轴在基本坐标系中的属 性	M系列: 1, 2, 3 T系列: 1, 3
SERVO AXIS NUM	No.1023	各轴的伺服轴号	从开头的轴数起 为1,2,3…
OPTx	No.1815#1	是否使用外置脉冲编码器 0:不使用 1:使用	
APZx	No.1815#4	机械位置和绝对位置检测 器的位置对应 0:尚未结束 1:已经结束	
APCx	No.1815#5	 位置检测器为 0:增量位置检测器 1:绝对位置检测器 	
SERVO LOOP GAIN	No.1825	各轴伺服位置环增益	
IN-POS WIDTH	No.1826	各轴的到位宽度	
ERR LIMIT:MOVE	No.1828	各轴的移动中位置偏差极 限值	
ERR LIMIT:STOP	No.1829	各轴的停止时位置偏差极 限值	500

组	项目名	参数号	简要说明	初始操作设定值
主轴	A/S	No.3716#0	主轴电机的种类为 0: 模拟主轴 1: 串行主轴	
	SPDL INDEX NO.	No.3717	主轴放大器号 不使用的主轴请设定 0	1

组	项目名	参数号	简要说明	初始操作设定值
坐标	REF. POINT#1	No.1240	各轴的第1参考点的机械坐 标	
	REF. POINT#2	No.1241	各轴的第2参考点的机械坐 标	
	AMOUNT OF 1 ROT	No.1260	回转轴每旋转一轴的移动量	360000

LIMIT1+	No.1320	存储行程检测1的正向边界
LIMIT1-	No.1321	坐标值 存储行程检测1的负向边界
		至你值

组	项目名	参数号	简要说明	初始操作设定值
进给	RDR	No.1401#6	在快速移动指令中空运行	0
速度			0: 无效 1: 有效	
	DRY RUN RATE	No.1410	空运行速度	
	RAPID	No.1420	每个轴的快速移动速度	
	FEEDRATE			
	RAPID	No.1421	每个轴的快速移动倍率中的	
	OVERIDE FO		的 F0 速度	
	JOG FEEDRATE	No.1423	每个轴的 JOG 进给速度	
	MANUAL	No.1424	每个轴的手动快速移动速度	
	RAPID F			
	REF RETURN FL	No.1425	每个轴的返回参考点时的	
			FL 速度	
	REF FEEDRATE	No.1428	每个轴的返回参考点速度	
	MAX CUT	No.1430	每个轴的最大切削进给速度	
	FEEDRATE			

组	项目名	参数号	简要说明	初始操作设定值
加/减	CTL	No.1610#0	切削进给、空运行的加减速	
速			为	
			0: 指数函数型加减速	
			1: 直线型加减速	
	JGL	No.1610#4	JOG 进给的加减速为	
			0: 指数函数型加减速	
			1: 直线型加减速	
	RAPID TIME	No.1620	每个轴的快速移动的直线型	
	CONST		加减速时间常数	
	CUT TIME	No.1622	每个轴的切削进给的直线型	
	CONST		加减速时间常数	
	CUT FL	No.1623	切削进给插补后加减速的	
			FL 速度	
	JOG TIME	No.1624	每个轴的 JOG 进给的直线	
	CONST		型加减速时间常数	
	JOG FL	No.1625	每个轴的 JOG 进给的指数	
			函数型加减速的 FL 速度	

2.4 FSSB 的初始设定

2.4.1 FSSB 设定概述

(1) 概要

通过将 CNC 控制器和伺服放大器之间用一根光纤电缆连接起来的高速串行伺服总线 (FSSB: Fanuc Serial Servo Bus),可大幅减少机床的电装部所需的电缆。

使用 FSSB 的系统中,对轴的设定,需要设定如下参数。

- No.1023
- No.1905
- No.1936, 1937
- No.14340~14349, No.14376~14391

设定这些参数的方法有如下3种。

1、手动设定1

通过参数 No.1023 的设定进行默认的轴设定。由此就不需要设定参数(No.1905, No.1936、1937, No.14340~14349, No.14376~14391),也不会进行自动设定。应注意的 是,有的功能无法使用。

2、自动设定

通过利用 FSSB 设定画面,输入轴和放大器的关系,进行轴设定的自动计算,即自动设定参数(No.1023, No.1905, No.1936、1937, No.14340~14349, No.14376~14391)。

3、手动设定2

直接输入所有参数(No.1023, No.1905, No.1936、1937, No.14340~14349, No.14376~14391)。

注释

1 有关 FSSB 设定的详细信息,请查阅连接说明书(功能)。

(2) 解释

● 从控装置

使用 FSSB 的系统,通过光缆来连接 CNC 和伺服放大器以及分离式检测器接口单元。这些放大器和分离式检测器接口单元叫做从控装置。2 轴放大器由 2 个从控装置组成,3 轴放大器则由 3 个从控装置组成。从控装置上,按照离 CNC 由近到远的顺序相对 FSSB 赋予 1,2,…10 的编号(从控装置号)。

2.4.2 FSSB 设定

当没有使用分离式检测器时, FSSB 设定采用手动设定 1, 可跳过该部分。本节将详细 阐述 FSSB 自动设定, 有关 FSSB 手动设定 2, 请查阅连接手册(功能)的相关章节。

(1) FSSB (AMP) 设定

进入参数设定支援画面,按下软键[(操作)],将光标移动至"FSSB(AMP)"处,按下 软键[选择],出现参数设定画面。此后的参数设定,就在该画面进行。

现在位置		00000 N00000	现在位置	00000 N00000
$\begin{array}{c} X_1 \\ Y_1 \\ Z_1 \\ B_1 \\ X_2 \end{array}$	絶対坐标 Ø.000 Ø.000 Ø.000 Ø.000 Ø.000	F 回工零件数 0 运行时间 0H 0H 0F 溜环时前 0H 0H 0F 05 数大器收定 号、放大 系列 単元电流 油 名称 1-03. ft1-1 α1 50H 20A 頁正 ¥1 1-02. ft1-1 α1 50H 20A 頁正 ¥1 1-02. ft1-1 α1 50H 20A 頁正 ¥1	 地対坐标 〇・〇〇〇 Y1 〇・〇〇〇 Z1 〇・〇〇〇 B1 〇・〇〇〇 X2 〇・〇〇〇 	F ② 毫米/ 該行时間 0H 0H 留环时間 0H 0H 0E 数大器设定 9. 其它 起式 PCB ID 1-5 H1 a SUU (4AVES) 1-6 H2 a SUU (4AVES)
601 649 664 617 600 669 591 698 615 622 650 640. 594 607 625 621 697 616 640 654 613.	模态 F H H F H H F H t S HD.T D KX.T D	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	模态 581 649 664 F H 17 608 695 H H 591 699 615 D H 122 659 604 H 122 659 604 H 122 659 604 1 124 667 1225 S HD,T 0 121 697 6160 NK,T 0 104 654 613.1	2-6 M4 A SDU (4AXES)
sect < 地对值 相对	0∠分 1 全部 手动		SACT 0 分 <	●>05 108% L 8% MDI ·········· 12:99:90] 放大器 釉 維修 【 《操作2 】

放大器设定画面上显示如下项目。

- 号……从控器装置号
- 放大……放大器型式
- 轴……控制轴号
- 名称……控制轴名称
- 作为放大器信息,显示下列项目的信息
 - ◆ 单元……伺服放大器单元种类
 - ◆ 系列……伺服放大器系列
 - ◆ 电流……最大电流值
- 作为分离式检测接口单元信息,显示下列项目的信息

- ◆ 其他……在表示分离式检测器接口单元的开头字母"M"之后,显示从靠近 CNC 一侧数起的表示第几台分离式检测接口单元的数字
- ◆ 型式……分离式检测器接口单元的型式,以字母予以显示。
- ◆ PCB ID ······ 以 4 位 16 进制数显示分离式检测器接口单元的 ID。

在设定上述相关项目后,按下软键[(操作)],显示如下界面,按下软键[设定]。

(2) FSSB(轴) 设定

进入参数设定支援画面,按下软键[(操作)],将光标移动至"FSSB(轴)"处,按下软键[选择],出现参数设定画面。此后的参数设定,就在该画面进行。

现在位置		00000 N00000
従 ×1 ×1 ×1	^{这一日本} 10.000 10.000	F ② _{毫米∕} DRN F 500 加工零件数 0 运行时间 0H 0M 循环时间 0H 0M 0S
Z1 B1 X2	0.000 0.000 0.000	抽设定 轴 名称 放大器 M 轴 CS 双电 1 2 3 4 专有 1 X1 A1-L 1000 0 0 0 00
GØ1 G49 G64 F G17 G80 G69 H C91 G99 G15 D	模态 M M	2 Y1 A1-H 0 1 0 3 0 01 3 21 A2-L 2 0 0 3 0 00 4 B1 A2-H 0 0 0 0 1 00 5 X2 A3-L 0 0 10 3 0 00 6 Y2 A3-H 0 3 0 02
622 650 640.1 694 667 625 5 621 697 6160 640.67 640 654 613.1 1	HD. T Ø NX. T Ø	7 22 A4-L 0 2 0 0 3 0 00 8 B2 A4-H 0 0 0 0 0 2 00
SACT < 绝对值 相对	●/分全部 手动	HDI ***** **** 12:00:00 设定 读入 输入

轴设定画面上显示如下项目。

- 轴……控制轴号
- 名称……控制轴名称
- 放大器……连接在各轴上的放大器的类型
- M1……用于分离式检测器接口单元1的连接器号
- M2……用于分离式检测器接口单元2的连接器号
- 轴专用

伺服 HRV3 控制轴上以一个 DSP 进行控制的轴数有限制时,显示可由保持在 SRAM 上的一个 DSP 进行控制可能的轴数。"0"表示没有限制。

- CS……CS 轮廓控制轴
 显示保持在 SRAM 上的值。在 CS 轮廓控制轴上显示主轴号。
 设定
 - 在设定上述相关项目后,按下软键[(操作)],显示如下界面,按下软键[设定]。

(3) NC 重启动

通过以上操作执行自动计算,设定参数(No.1023, No.1905, No.1936、1937, No.14340~14349, No.14376~14391)。此外,表示各参数的设定已经完成的参数 AES(No.1902#1)成为"1",进行电源的 OFF/ON 操作时,按照各参数进行轴设定。

2.4.3 FSSB 相关报警及信息

编号	信息	内容
SV0456	非法的电流回路	所设定的电流控制周期不可设定。
		所使用的放大器脉冲模块不适合于高速 HRV。或者系统没有
		满足进行高速 HRV 控制的制约条件。
SV0458	电流回路错误	电流控制周期的设定和实际的电流控制周期不同。
SV0459	高速 HRV 设定错误	伺服轴号(参数(No.1023))相邻的奇数和偶数的 2 个轴中,
		一个轴能够进行高速 HRV 控制,另一个轴不能进行高速 HRV
		控制。
SV0460	FSSB 断线	FSSB 通讯突然脱开。可能是因为下面的原因。
		1.FSSB 通讯电缆脱开或断线。
		2.放大器的电源突然切断。
		3.放大器发出低压报警。
SV0462	CNC 数据传送错误	因为 FSSB 通讯错误,从控侧端接收不到正确数据。
编号	信息	内容
SV0463	送从属器数据失败	因为 FSSB 通讯错误,伺服软件接收不到正确数据。
SV0465	读 ID 数据失败	接通电源时,未能读出放大器的初始 ID 信息。
SV0466	电机/放大器组合不对	放大器的最大电流值和电机的最大电流值不同。
		可能是因为下面的原因。
		1. 轴和放大器连结的指定不正确。
		2. 参数(No.2165)的设定值不正确。
SV0468	高速 HRV 设定错误 (AMP)	针对不能使用高速 HRV 的放大器控制轴,进行使用高速 HRV
		的设定。
SV1067	FSSB: 配置错误 (软件)	发生了 FSSB 配置错误(软件检测)。所连接的放大器类型与
		FSSB 设定值存在差异。
SV5134	FSSB: 开机超时	初始化时并没有使 FSSB 处于开的待用状态。
		可能是轴卡不良。
SV5136	FSSB: 放大器数不足	与控制轴的数目比较时, FSSB 识别的放大器数目不足。
		轴数的设定或者放大器的连接有误。
SV5137	FSSB: 配置错误	发生了 FSSB 配置错误。
		所连接的放大器类型与 FSSB 设定值存在差异。
SV5139	FSSB: 错误	伺服的初始化没有正常结束。可能是因为光缆不良、放大器
		和其他的模块之间连接错误。
SV5197	FSSB: 开机超时	虽然 CNC 允许 FSSB 打开,但是 FSSB 并未打开。
		确认 CNC 和放大器间的连接情况。
SV5311	FSSB: 连接非法	1. 将伺服轴号(参数(No.1023))相邻的奇数和偶数的轴分别连
		接到不同路径的 FSSB 上的放大器并分配时出现此报警信
		息。
		2. 当系统不符合为进行高速 HRV 控制的制约条件时, 2个
		FSSB 的电流控制周期不同,在设定了使用连接在不同路
		径上的 FSSB 脉冲模块时会发出此报警。

2.5 伺服的初始设定

2.5.1 初始设定流程

请在伺服设定画面、伺服调整画面上进行下列设定。

2.5.2 伺服设定步骤

(1) 准备

在紧急停止状态下,进入参数设定支援画面,按下软键[(操作)],将光标移动至"伺服 设定"处,按下软键[选择],出现参数设定画面。此后的参数设定,就在该画面进行。

	伺	服	设	定								(000	002	2 N	100	100)
									Х	t t	押		Y		轴		_	
1	初	始	化	设	定	位			000	000	010))	00	000	000	10		
2	电	机	代	码							256	3			2	256	-	
3	AM	R							000	000	000	0	00	000	000	000	-	
(4)	指	仒	倍	乘	比							2					2	
5	柔	性	齿	轮	比							1					1	
د ،	(N	<u>⁄М</u>)]	M					1	100				1	00	
6	方	向	设	定							- 1	l 1 1				1	11	
7	速	度	反	馈	脉	冲娄	女 .				81	192				81	92	
.,	位	置	反	馈	脉	冲娄	女.				125	500			1	25	00	
8	参	考	计	数	器	容量	<u> </u>				100	000			1	00	00	
	A)	^																
												S		0 1	ΓØ(000)	
	R№	1T	k	< * *	*	***	**	* *		17	:33	3:2	9					
		菜	〕单	i	I	切抄	ŧ.				ľ						+	

(2) 初始设定

开始初始设定,在将伺服设定画面的①~⑧都设定完后,进行 CNC 电源的 OFF/ON 操作。

此外,若是全闭环,请在一开始就设定下列参数 OPTx (No.1815#1) = "1"。

Γ	1815	#7	#6	#5	#4	#3	#2	#1	#0
								OPTx	
#1	OPTx	x 作为	」位置检测	器是否使	可用外置脉	x 冲编码器			
		0:	不使用		←半闭环	、时			
		1:	使用		←全闭环	、时			

①初始化设定位

	初始化设定位	0000000	
<u>)</u> 	当初始化设定正常结束时,	在下次进行 CNC 电源的 OFF/ON 操作时,	自动地设定为
DGRF	P(#1)= "1", PRMC(#3)= "	1"。	

2 电机代码的设定

设定电机代码。

从下表中选择将要使用的 αiS/αiF/βiS 系列伺服电机的电机代码。电机代码随电机型号、 图号(A06B-****-B***的中间 4 位数字)以及驱动放大器的最大电流值对应如下表格。

♦ αiS 系列电机

由机刑县	中和國旨	电机号		90D0	00.00	90B5	00.01	9096
-12-10-12-17	电机固节	HRV1	HRV2	90E0	90B0	90B6	90B1	9096
α <i>i</i> S 2/5000	0212	162	262	А	Н	А	А	А
α <i>i</i> S 2/6000	0218		284	G		В	В	-
α <i>i</i> S 4/5000	0215	165	265	А	Н	Α	А	А
α <i>i</i> S 8/4000	0235	185	285	А	Н	Α	Α	А
α <i>i</i> S 8/6000	0232		290	G		В	В	-
α <i>İ</i> S 12/4000	0238	188	288	А	Н	А	Α	А
α <i>i</i> S 22/4000	0265	215	315	А	Н	А	А	А
α <i>i</i> S 30/4000	0268	218	318	А	Н	А	А	А
α <i>i</i> S 40/4000	0272	222	322	А	Н	А	А	А
α <i>i</i> S 50/3000	0275-B□0□	224	324	В	v	Α	А	F
α <i>İ</i> S 50/3000 FAN	0275-B□1□	225	325	А	N	Α	А	D
αis 100/2500	0285	235	335	Α	Т	Α	Α	F
αis 200/2500	0288	238	338	А	т	А	А	F
α <i>i</i> S 300/2000	0292	115	342	В	v	А	Α	
α <i>i</i> S 500/2000	0295	245	345	А	Т	А	Α	F

♦ αiS(400V 高压)系列电机

中和地口	山和図具	电机号		90D0	0000	90B5	00001	000/
电机坐号	电机图写	HRV1	HRV2	90E0	9080	90B6	9081	9096
α <i>i</i> S 2/5000HV	0213	163	263	Α	Q	Α	A	D
α <i>i</i> S 2/6000HV	0219	•	287	G	•	в	в	-
α <i>i</i> S 4/5000HV	0216	166	266	Α	Q	А	A	D
α <i>i</i> S 8/4000HV	0236	186	286	Α	N	Α	A	D
α <i>İ</i> S 8/6000HV	0233	-	292	G		В	В	-
α <i>İ</i> S 12/4000HV	0239	189	289	А	N	А	A	D
α <i>İ</i> S 22/4000HV	0266	216	316	Α	N	Α	A	D
α <i>İ</i> S 30/4000HV	0269	219	319	Α	N	Α	A	D
α <i>İ</i> S 40/4000HV	0273	223	323	Α	N	Α	A	D
α <i>İ</i> S 50/3000HV FAN	0276-B□1□	226	326	А	Ν	Α	A	D
α <i>i</i> S 50/3000HV	0276-B□0□	227	327	В	v	Α	A	F
α <i>i</i> S 100/2500HV	0286	236	336	В	v	Α	A	F
α <i>i</i> S 200/2500HV	0289	239	339	в	v	Α	A	F
α <i>i</i> S 300/2000HV	0293	243	343	В	v	Α	A	F
α <i>i</i> S 500/2000HV	0296	246	346	В	v	Α	A	F
α <i>i</i> S 1000/2000HV	0298	248	348	В	v	Α	A	F
$\alpha i S 2000/2000 HV^{(21011)}$	0091	-	340	J	-	В	В	-

◆ αiF 系列电机

由机制品		电机号		90D0		90B5	00004	0000
电机型与	电机图亏	HRV1	HRV2	90E0	90B0	90B6	90B6	
α <i>İ</i> F 1/5000	0202	152	252	Α	Н	A	A	A
α <i>İ</i> F 2/5000	0205	155	255	Α	н	A	A	A
α <i>İ</i> F 4/4000	0223	173	273	A	Н	A	A	A
α <i>İ</i> F 8/3000	0227	177	277	Α	н	A	A	A
α <i>İ</i> F 12/3000	0243	193	293	Α	Н	A	A	A
α <i>İ</i> F 22/3000	0247	197	297	Α	н	A	A	A
α <i>İ</i> F 30/3000	0253	203	303	A	н	A	A	A
α <i>İ</i> F 40/3000	0257-B□0□	207	307	Α	Н	A	A	A
α <i>İ</i> F 40/3000 FAN	0257-B□1□	208	308	Α	I	A	A	с

♦ αiF(400V 高压)系列电机

中省地口	中和困日	电机号		90D0	0000	90B5		0006	
电机型专	电机图写	HRV1	HRV2	90E0	90R0	90B6	90R1	9096	
α <i>İ</i> F 4/4000HV	0225	175	275	А	Q	Α	А	Е	
α <i>İ</i> F 8/3000HV	0229	179	279	А	Q	А	А	Е	
α <i>İ</i> F 12/3000HV	0245	195	295	Α	Q	Α	А	Е	
α <i>İ</i> F 22/3000HV	0249	199	299	А	Q	Α	А	Е	

♦ βiS 系列电机

电机型号	电机图号	驱动 放大器	电机 HRV1	机号 HRV2	90D0 90E0	90 B 0	90B5 90B6	90B1	9096
β <i>İ</i> \$0,2/5000	0111 ^(20#1)	4A	-	260	Α	Ν	Α	Α	*
β <i>İ</i> S 0.3/5000	0112 ^(注释 1)	4A	-	261	Α	N	Α	А	*
β <i>İ</i> S 0.4/5000	0114 ^(21#1)	20A	-	280	Α	N	Α	А	*
β <i>İ</i> S 0.5/6000	0115	20A	181	281	G	-	В	в	-
β <i>İ</i> S 1/6000	0116	20A	182	282	G	-	В	В	-
Dis 214000	00(1(注册2)	20A	153	253	В	v	Α	А	F
p <i>tS 2</i> /4000	0061	40A	154	254	В	v	А	А	F
Dis 1/1000	00(2(注册2)	20A	156	256	В	v	Α	Α	F
p <i>t5</i> 4/4000	0063	40A	157	257	В	v	Α	Α	F
D 15 8/2000	00円を(注釈 2)	20A	158	258	В	v	Α	Α	F
p <i>ts</i> a/3000	00/5	40A	159	259	В	v	Α	А	F
β <i>İ</i> S 12/2000	0077 ^(21# 2)	20A	169	269	-	-	D	-	-
β <i>İ</i> S 12/3000	0078	40A	172	272	В	v	Α	Α	F
β <i>İ</i> S 22/2000	0085	40A	174	274	В	v	Α	Α	F
β iS12/2000	0077	40A	168	268	_	_		_	

③AMR 的设定

此系数相当于伺服电机的级数之参数。 若是 αiS/αiF/βiS 电机,务必将其设定为 00000000。

④ 指令倍乘比的设定

设定从 NC 到伺服系统的移动量的指令倍率。

设定值=(指令单位/检测单位)×2

指令倍乘比

通常,指令单位=检测单位,因此,将其设定为2。

注释

1 各轴的移动指令:直径/半径指定。
通过参数 DIAx (No.1006#3)进行选择。
0i-C 的情况下,为实现指令了直径指定轴的移动量,不仅需要将参数 DIAx (No.1006#3)设定为"1",还需要进行如下 2 个中任一个的变更。
将指令倍乘比(CMR)设定为 1/2。(检查单位不变)
将检测单位设定为 1/2,将柔性进给齿轮比(DMR)设定为 2 倍。
0i-D 的情况下,只要将参数 DIAx (No.1006#3)设定为"1",CNC 就会将指令脉冲本身设定为 1/2,所以无需进行上述变更。(不改变检查单位的情形)
另外,在将检测单位设定为 1/2 的情况下,将 CMR 和 DMR 都设定为 2 倍。

2

⑤柔性齿轮比的设定

⑤-1 半闭环时

直线轴柔性齿轮比设定例值(齿轮比1:1)

检测单位	滚珠丝杆的螺距(N/M)								
	6mm	8mm	10mm	12mm	16mm	20mm			
1µm	6/1000	8/1000	10/1000	12/1000	16/1000	20/1000			
0.5µm	12/1000	16/1000	20/1000	24/1000	32/1000	40/1000			
0.1µm	60/1000	80/1000	100/1000	120/1000	160/1000	200/1000			

(参数计算式)

作为电机每旋转一周100万脉冲,设定脉冲的被乘比,而与脉冲编码器的种类无关。

注释

柔性齿轮比的分子、分母,其最大设定值(约分后)均为32767。

设定例(1)

直接连接螺距 10mm/rev 的滚珠丝杆,检测单位为 1μm 时 电机每旋转一周(10mm)所需的脉冲数为 10/0.0001 = 100000 脉冲。 柔性齿轮比分子 100000 1 _______ = _____ = ____ 柔性齿轮比分母 100 万 100

设定例(2)

回转轴、电机工作台之间的减少比为 10:1,检测单位为 0.001 度的情形

- 电机每旋转一周时,工作台转动 360/10=36 度。
- 检测单位为 0.001 度,因此,电机每旋转一周的位置脉冲数为 (电机每旋转一周 36 度)/(检测单位 0.001 度)=36000 脉冲 因此,柔性齿轮比的设定如下所示。

柔性齿轮比分子	36000	36
=	= =	
柔性齿轮比分母	100 万	1000

⑤-2 全闭环时

柔性齿轮比设定值例(N/M)

检测单位	光栅尺的分辨率							
	1µm	0.5µm	0.1µm	0.05µm				
1µm	1/1	1/2	1/10	1/20				
0.5µm	-	1/1	1/5	1/10				
0.1µm	-	-	1/1	1/2				

(参数计算式)

设定相对于光栅尺输出脉冲的脉冲被乘比。

设定例(1)

使用 0.5µm 光栅尺, 检测 1µm 的情形

- 对于 1µm 的移动,光栅尺的输出脉冲为 1µm/0.5µm = 2 脉冲
- 使用于位置控制的脉冲,由于检测单位为1µm,输出脉冲为1脉冲
 因此,柔性齿轮比的设定如下所示。
 柔性齿轮比分子
 1

柔性齿轮比分母 2

⑥ 方向的设定

⑦速度反馈脉冲数、位置反馈脉冲数的设定

⑦-1 半闭环时

速度反馈脉冲数	8192(固定值)	
位置反馈脉冲数	12500(固定值)	

⑦-2 全闭环时(并行型、串行光栅尺)

速度反馈脉冲数	8192(固定值)
位置反馈脉冲数	来自电机每旋转一周光栅尺的
	反馈脉冲数

为位置脉冲数设定一个当电机旋转一周从外设检测器反馈的脉冲数(柔性齿轮比处理之前)。

设定例(1)

在使用螺距 10mm 的滚珠丝杆(直接连接)、具有 1 脉冲 0.5μm 的分辨率的外设检测器的情形下

因此,位置脉冲数为20000。

位置脉冲数的计算值大于 32767 时,请使用位置脉冲转换系数(No.2185),以位置脉冲数和转换系数这 2 个参数的乘积设定位置脉冲数。

2024	位置脉冲数	
2185	位置脉冲数转换系数	

设定例(2)

在使用螺距为 16mm 的滚珠丝杆(直接连接)、具有 1 脉冲 0.1μm 的分辨率的外设检测器的情形下

因此,位置脉冲数为160000,而此值超过32767,不能在伺服设定画面上的位置脉冲数范围内。

在这种情形下,可进行如下所示的设定。

No.2024 = 16000

No.2185 = 10

⑧参考计数器容量的设定

设定参考器计数器。在进行栅格方式参考点返回时使用。

⑧-1 半闭环时

参考计数器容量 = 电机每旋转一周所需的位置脉冲数

设定例

检测单位 1µm 滚珠丝杆的螺距 所需的位置脉冲数 栅格宽 参考计数器 (mm/旋转) (mm)(脉冲/旋转) 10 10000 10000 10 20 20000 20 20000

⑧-2 全闭环时

参考计数器容量 = Z 相 (参考点)的间隔/检测单位

设定例

Z 相的间隔=50mm, 检测单位=1μm 的情形 参考计数器 = 50/0.0001 = 50000

断开 NC 的电源,而后再接通。至此,伺服的初始设定结束。

2.6 伺服参数的初始设定

2.6.1 初始设定步骤

(1) 准备

在紧急停止状态下,进入参数设定支援画面,按下软键[(操作)],将光标移动至"伺服 参数"处,按下软键[选择],出现参数设定画面。此后的参数设定,就在该画面进行。

伺 服 参 数 (电 流)	00002 N00100
X 轴 PAGE: 1/7 电流PI控制 Ø X HRV3有效 Ø Y HRV3电流倍率 Z	0 0 0
改善电流控制的响应性能。 通常使用时请设定为"1"。	
A) ^	
S	0 T0000
RMT **** *** 17:32:0	06
✓ 初始化 GR初期 轴改	变 输入 +

(2) 标准值的设定

可以设定参数的标准值。标准值的设定有两种方法,只设定由光标所选的参数的方法和 设定组的所有参数的方法。步骤如下所示。

个别的参数标准值设定

移动光标到设定了标准值的项目。 按下软键[初始化]。 显示"是否设定初始值?"的信息。 按下软键[执行]。

<

光标所选项目没有标准值时,按下软键[初始化]时,显示告警信息"无初始值"。

各组总体的标准值设定

按下软键[GR 初期]。

帮助信息框内显示"设定(光标所处的组名)群的参数标准值"的信息。显示"是否设 定初始值?"的信息。

按下软键[执行]。

· ·	·	f	取	消	执	行	5	
 A								

取消 执行

通过以上操作,设定所选组的标准值。这种情况下,自动设定所选组的所有参数,所以 在设定标准值时要充分注意。没有标准值的参数不予设定。

2.6.2 伺服参数一览

这是伺服参数的一览。有关各参数的详情,请参阅参数说明书。

组	项目名	参数号	简要说明	初始操作设定值
电流	电流 PI 控制	No.2203#2	改善电流控制的响应性	1
控制			通常请在设定为"1"后使用	
	HRV3 有效	No.2013#0	0: HRV1 或 2 1: HRV3	
			直线电机等建议使用 HRV3	
	HRV3 电流倍率	No.2334	HRV3 指令中的电流增益倍	150
			率(%)	
			通常请设定"150"左右	

组	项目名	参数号	简要说明	初始操作设定值
速度	PI 控制	No.2003	0: 无效 1: 有效	1
控制	高速比例项处理	No.2017#7	0: 无效 1: 有效	1
	最新速度 FB	No.2006#4	设定为"1"时,利用最新的	1
			FB 数据	
	停止时增益降低	No.2016#3	0: 无效 1: 有效	1
	停止判断等级	No.2119	以检测单位设定停止判断等	
			级,通常设定 2μm 左右的值	
	速度积分增益	No.2043	通常使用标准值	
	速度比例增益	No.2044	通常使用标准值	
	速度增益	No.2021	设定"100"左右	100
	扭矩指令过滤器	No.2067	建议值为 1166(200HZ)	1166
	切削/快速进给 G	No.2202#1	切削快速进给别速度增益切	1
	切换		换功能	
			通常设定为"1"下使用	
	切削用 G 倍率	No.2107	建议值为150左右	150
	HRV3 速度 G 倍	No.2335	建议值为200左右	200
	率	-		

组	项目名	参数号	简要说明	初始操作设定值
位置	位置增益	No.1825	建议值为 5000	5000
控制	FF 有效	No.2005#1	0:无效 1:有效	M 系列: 1
				T 系列: 无标准
				值
	快速 FF 有效	No.1800#3	0:无效 1:有效	同上
	位置 FF 系数	No.2092	通常设定为 10000(单位为	10000
			0.01%)	
	速度 FF 系数	No.2069	通常设定为 50 左右(单位为	50
			1%)	
注: FF	(Forward Feedback)前馈		

组	项目名	参数号	简要说明	初始操作设定值
背隙	BL 补偿	No.1851	背隙补偿量(检测单位)	1
加速			请设为0以外的值	
	全闭环 BL 补偿	No.2006#0	全闭环时不进行背隙补偿。	1
			全闭环时,请设定为"1"	
	BL 加速有效	No.2003#5	0: 无效 1: 有效	1
	BL 加速停	No.2009#7	0: 无效 1: 有效	1
	切削的 BL 加速 1	No.2009#6	0: 无效 1: 有效	1

切削的 BL 加速 2 2 段 BL 加速	No.2223#7 No.2015#6	0: 无效 1: 有效 0: 无效 1: 有效 为进行简单调试,请在设定	1 0
BL 加速量	No.2048	为"0"下使用 从 50 左右起进行调试	50
BL 加速停止量 BL 加速时间	No.2082 No.2071	请设定 5/检测单位(μm) 请设定 20	20

注: BL (Backlash 背隙)

2.7 与高速高精度相关的 NC 参数的初始设定

2.7.1 初始设定步骤

(1) 准备

在紧急停止状态下,进入参数设定支援画面,按下软键[(操作)],将光标移动至"高精 度设定"处,按下软键[选择],出现参数设定画面。此后的参数设定,就在该画面进行。

高	精度(〔时间	可常 数			00	002	N001	.00
X	(轴		PAGE:	1/ 4					
1	快进直	〔线』	텓 ТС		Х			200	
				200	Y			200	
1	快进钟	「型 T	С		Z			200	
				200	·				1
)	加速度	[类 ヨ	臣	1	Ī				
1	插 补 后	加り	或速 TC						
				64					
끉	宝 快 -	讲 的	古 线 刑	र्ण भग आहे	演 时	间 党 数			
1X		<u>ст</u> нр	H AN E	E 711 19%	Nor H1	XX III IVI	0		
A)	^								
						S	0 T	0000	
RM	/IT *:	***	*** *	**	17:	46:35	[
		 衣	1 始 化	」 GR 初	期 4	油改变	斩	λ 1	1+
		V		1 1/4	///	m or a	1		

(2) 初始设定

进行参数的初始设定,具体操作步骤请参考前面内容。

2.7.2 高精度设定的 NC 参数一览

下面为通过高精度设定的 NC 参数的初始设定进行设定的参数一览。有关各参数的详 情,请参阅参数说明书。

组	项目名	参数号	简要说明	初始操作设定值
背隙 加速	BL 补偿	No.1851	背隙补偿量(检测单位) 请设为0以外的值	1
	全闭环 BL 补偿	No.2006#0	全闭环时不进行背隙补偿。 全闭环时,请设定为"1"	1
	BL 加速有效	No.2003#5	0: 无效 1: 有效	1
	BL 加速停	No.2009#7	0: 无效 1: 有效	1
	切削的 BL 加速 1	No.2009#6	0: 无效 1: 有效	1
	切削的 BL 加速 2	No.2223#7	0: 无效 1: 有效	1

2 段 BL 加速	No.2015#6	0: 无效 1: 有效 为进行简单调试,请在设定 为"0"下使用	0
BL 加速量	No.2048	从 50 左右起进行调试	50
BL 加速停止量	No.2082	请设定 5/检测单位(μm)	
BL 加速时间	No.2071	请设定 20	20

组	项目名	参数号	简要说明	初始操作设定值
时间	快进直线型 TC	No.1620	快速直线型时间常数(ms)	200
常数	快进铃型 TC	No.1621	快速铃型时间常数(ms)	200
	加速度类型	No.1610#0	插补后时间常数的类型	1
			0:指数 1:直线	
			通常请在设定为"1"下使用	
	插补后加减速 TC	No.1622	通常方式中的插补后时间常	64
			数	
			建议值为 "64"	
	插补前最大加速	No.1660	插补前加减速的最大加速度	833.33
	度		(mm/sec/sec)	
			建议值为"833"	
	插补前铃型 TC	No.1772	插补前加减速的铃型时间常	57
			数(ms)	
			建议值为"57"	<u>.</u>
	插补后铃型有效	No.1602#3	插补前加减速方式中的插补	0
			后加减速类型	
			0: 指数或直线 1: 铃型	
	·도 한 르 코 小 피	N. 1600//6	通常请任设定为"0" 下使用	1
	插 补后且线型有	No.1602#6	插补削加减速力式中的插补	1
	X		后加减速尖型	
			0: 指纹 1: 且线	
	任计门中间带带	No 1760	现吊肎仕攻正万 ¹ 卜 () 用 括礼 益加减 违 主 土 由 的 任 社	20
	1田作口时时吊翼	110.1/09	1111个时加佩迷力式中的抽补	32
			归时间吊 <u>级</u> 建议结头"22"	
			建议恒为 32	

组	项目名	参数号	简要说明	初始操作设定值
自动	圆弧容许加速度	No.1735	圆弧插补的容许加速度	
加减			(mm/sec/sec)	
速	圆弧下限速度	No.1732	圆弧的最低速度(mm/min)	100
			建议值为"100"	
	拐角减速的速度	No.1783	拐角减速速度(mm/min)	533
			建议值为"533"	
	最大切削进给速	No.1432	AI 轮廓控制或 AI 先行控制	
	度		中的最大切削进给速度	
			(mm/min)	
			建议值见*1	
	容许加速度	No.1737	速度决定中的容许加速度变	
			化量 (mm/sec/sec)	
			建议值见*2	

*1 No.1432 的建议值如下所示

No.1432 为 0 时: 10000 No.1432 为 0 外的情形: No.1432 的设定值 *2 No.1737 的建议值如下所示 建议值=(No.1432 的建议值)×(157/10000)

注释

- 1 在改变最大切削进给速度(No.1432)值的情况下,请初始化容许加速度(No.1737)的项目。
- 2 进行容许加速度(No.1737)的初始化时,在尚未设定最大切削进给速度(No.1432) 值的情况下,发出警告"无初始值"

2.8 与主轴相关的 NC 参数的初始设定

2.8.1 串行主轴初始设定步骤

(1) 准备

在紧急停止状态下,进入参数设定支援画面,按下软键[(操作)],将光标移动至"主轴 设定"处,按下软键[选择],出现参数设定画面。此后的参数设定,就在该画面进行。

王 牰 伩 定		00002 N00100
主轴	:S11	PAGE: 1/2
电机型号		<mark>332</mark>
电机名称		β iI3∕10000
主轴最高速度(/分)		10000
电机最高速度(/分)		10000
主轴编码器种类		0
电机编码器种类		0
为了自动设定电机。	参数	
设定电机型号代码。	>	
【代码】: 电机代码表		
A) ^		
	S	0 T0000
RMT **** ***	17:47	09
▲ 【代码】		输入+

注释

1 尚未连接串行主轴的情况下,以及尚未正确设定主轴放大器号(No.3717)的情形下, 不显示任何项目。

(2)操作

设定对象主轴的变更

按下软键[(操作)],显示软键[SP 改变]。按下软键[SP 改变],变更进行设定的对象主轴。

数据的输入

在设定画面上,移动光标到要设定的项目,进行参数的设置。

从电机型号代码一览进行的输入

"电机型号"的数据输入,可以从电机型号代码一览进行。按下软键[代码]时显示电机 型号代码一览画面。软键[代码]在光标位于电机型号项目时显示。此外,要从电机型号一览 画面返回到上一画面,按下软键[返回]。

切换到电机型号一览画面时,显示电机型号代码所对应的电机名称和放大器名称的一 览。将光标移动到希望设定的代码编号,按下软键[选择]时,输入完成。

注释

1希望输入一览中没有电机型号时,请直接输入电机代码。电机代码见本节附录1。

数据的设定

在所有项目中输入数据后,按下软键[设定],计算在 CNC 上启动主轴所需的参数值。 正常完成参数的计算时,软键[设定]将被隐藏起来,在进行主轴的自动设定的参数 SPLD(No.4019#7)中设定"1"。改变数据时,再次显示软键[设定],在进行主轴的自动设定 参数 SPLD(No.4019#7)中设定"0"。

在尚未输入项目的状态下按下软键[设定]时,将光标移动到未输入的项目,将会发出警告"请输入数据"。输入数据后按下软键[设定]。

数据的传输(NC 再启动)

只是按下软键[设定],还没有完成为启动主轴所需的参数设定。

在软键[设定]处隐藏的状态下进行 CNC 的再启动时,启动时由 CNC 计算并设定主轴的 启动所需的参数值。

2.8.2 串行主轴设定画面项目一览

项目名	参数号	简要说明	备注
电机型号	No.4133	设定为自动设定电机	参数值也可通过查阅
		参数的电机型号	主轴电机代码表, 直
			接输入
电机名称			根据所设定的"电机
			型号"值显示名称
主轴最高速度(rpm)	No.3741	设定主轴的最高速度	该参数是设定主轴第
			1 挡的最高转速,而
			非主轴的钳制速度
			(No.3736)
电机最高速度(rpm)	No.4020	设定主轴最高速度时	
		的电机速度(rpm)。	
		设定电机规格最高速	
		度以下。	
主轴编码器种类	No.4020#3#2#1#0		
编码器旋转方向	No.4001#4	0:与主轴相同的方向	"主轴编码器种类"
		1: 与主轴相反的方向	为位置编码器时显示
			项目
电机编码器种类	No.4010#2#1#0		
电机旋转方向	No.4000#0	0:与主轴相同的方向	下列情况下显示项
		1: 与主轴相反的方向	目:

串行主轴设定画面上进行设定的项目一览。

1、"主轴编码器种 类"为位置编码器或 接近开关 2、没有"主轴编码器 种类",且"电机编码 器种类"为 MZ 传感 接近开关检出脉冲 No.4004#3#2 主轴侧齿轮齿数 No.4171 设定主轴传动中的主 轴侧齿轮的齿数 电机侧齿轮齿数 No.4172 设定主轴传动中的电 机侧齿轮的齿数

2.8.3 串行主轴使用的注意事项

1. 串行主轴在使用过程中不输出的几个原因

- 在 PMC 中主轴急停 (G71.1)主轴停止信号(G29.6)。
 主轴倍率(G30 当 G30 为全 1 时 倍率为 0)没有处理。
 另外在 PMC 中注意 SIND 信号的处理 处理不当也将造成主轴不输出。
- 2) 参数中没有设置串行主轴功能选择参数, 即主轴没有设定
- 3) 当 No.1404#2 F8A 误设将造成刚性攻丝时速度相差 1000 倍。
- 4) 当 No.1405#0 F1U 误设将造成刚性攻丝时速度相差 10 倍。
- 5)当 No.4001#0 MRDY(6501#0)(G229.7/G70.7) 误设将造成主轴没有输出, 此时主轴放大器上 01#错误。
- 6) 在没有使用定向功能而设定 No.3732 将有可能造成主轴在低速旋转时不平稳
- 7) 当使用内装主轴时,使用 MCC 的吸合来进行换档,注意档位参数的设置(只设一档)。
- 8) 当设置 No.3708#0 (SAR) 信号的设置不当可能造成刚性攻丝的不输出。
- 9)当 No.3705#2 SGB (铣床专有)误设, 该参数设了以后使用 No.3751 / No.3752 的速度 由于此时 No.3751 / No.3752 往往没有设定,故主轴没有输出。
- 10) 此外应注意 FANUC 的串行主轴有相序 连接错误将导致主轴旋转异常主轴内部 SENSOR 损坏 放大器 31#报警。
- 11) No.8133#0SSC 恒周速控制对主轴换档的影响 (F34#0.1.2 无输出)。
- 12) No.4000#2 位置编码器的安装方向对一转信号的影响(可能检测不到一转信号)。

2.8.4 模拟主轴使用的注意事项

模拟主轴不输出的几种可能

- 1) 在 PMC 中主轴急停/主轴停止信号/主轴倍率/没有处理
- 2)参数中没有设置主轴选择参数/ 主轴的速度没有设定
- 3)当 No.1802#2 CTS 误设将没有模拟输出
- 4)参数 No.3708#0 SAR 模拟主轴没有此信号 误设主轴无输出 (JA8A 5/7 脚)

2.8.5 主轴电机代码

型号	β 3/10000 <i>i</i>	β 6/10000 <i>i</i>	β 8/8000 <i>i</i>	β 12/7000 <i>i</i>		ac15/6000 <i>i</i>
代码	332	333	334	335		246
型号	ac1/6000 <i>i</i>	ac2/6000 <i>i</i>	ac3/6000 <i>i</i>	ac6/6000 <i>i</i>	ac8/6000 <i>i</i>	ac12/6000 <i>i</i>
代码	240	241	242	243	244	245
型号	α 0. 5/10000 <i>i</i>	a 1/10000 <i>i</i>	a 1.5/10000 <i>i</i>	a 2/10000 <i>i</i>	α 3/10000 <i>i</i>	a 6/10000 <i>i</i>
代码	301	302	304	306	308	310
型号	a 8/8000 <i>i</i>	a 12/7000 <i>i</i>	α 15/7000 <i>i</i>	α 18/7000 <i>i</i>	α 22/7000 <i>i</i>	a 30/6000 <i>i</i>
代码	312	314	316	318	320	322
型号	a 40/6000 <i>i</i>	a 50/4500 <i>i</i>	a 1.5/15000 <i>i</i>	α 2/15000 <i>i</i>	α 3/12000 <i>i</i>	a 6/12000 <i>i</i>
代码	323	324	305	307	309	401
型号	a 8/10000 <i>i</i>	α 12/10000 <i>i</i>	α 15/10000 <i>i</i>	a 18/10000 <i>i</i>	а 22/10000 <i>i</i>	
代码	402	403	404	405	406	
型号	а 12/6000 <i>ip</i>	а 12/8000 <i>ip</i>	a 15/6000 <i>ip</i>	a 15/8000 <i>ip</i>	а 18/6000 <i>i</i> р	а 18/8000 <i>ip</i>
代码	407	407, N4020 =8000 N4023=94	408	408 , N4020 =8000, N4023 =94	409	409, N4020 =8000, N4023 =94
型号	а 22/6000 <i>ip</i>	а 22/8000 <i>ip</i>	a 30/6000 <i>ip</i>	a 40/6000 <i>ip</i>	а 50/6000 <i>i</i> <i>p</i>	а 60/4500 <i>ip</i>
代码	410	410, N4020 =8000, N4023 -94	411	412	413	414

注: 对于有几种电机,代码相同(比如: α 22/8000*ip*等),但有两个参数(N4020, N4023) 需要在初始化后手动修改。

第三节 利用 Servo Guide 软件进行伺服参数的调整

3.1 概述

在完成系统的硬件连接,并正确的进行基本参数、FSSB、主轴以及基本伺服参数的初始化设定后,系统即能够正常的工作了。为了更好的发挥控制系统的性能,提高加工的速度和精度,还要根据机床的机械特性和加工要求进行伺服参数的优化调整。本节的内容即结合 Servo Guide 软件说明伺服参数的调整方法。

3.2 Servo Guide 软件的设定

1. 打开伺服调整软件后,出现以下菜单画面:

图 2: 通信设定

画面中的"IP 地址"为 NC 的 IP 地址, NC 的 IP 地址检查如下:

图 3: CNC 的 IP 地址设定

PC 端的 IP 地址设定如下图所示:

Intel (R) PRO/100 VE Network		
	Internet 协议 (TCP/IP) 屉性	<u>? ×</u>
	常规	
此连接使用下列选定的组件 @): ☑ 黒Microsoft 网络客户端 ☑ 黒Microsoft 网络的文件和打!	如果网络支持此功能,则可以获取自动指派的 IP 费 您需要从网络系统管理员处获得适当的 IP 设置。	置。否则,
デ Internet 协议 (TCF/IF)	○ 自动获得 IP 地址(0) ● 使用下面的 IP 地址(2): IP 地址(2): 132.163.1	. 10
- 描述	子网婚時(U): 255.255.255 默认网关(D):	. D

图 4: PC 端 IP 地址设定

如果以上设定正确,在点击"测试"后还没有显示 OK,请检查网络连接是否正确。

图 5: NC-PC 正确连接

对于现在的新型笔记本电脑,内置网卡可以自动识别网络信号,则图 5 中的耦合器和交 叉网线可以省去,直接连接就可以了。

PCMCIA 卡型号: A15B-0001-C106(带线),如果系统有以太网接口,则不需要此卡。

3.3 参数画面

将 NC 切换到 MDI 方式, POS 画面,点击主菜单(图 1)上的"参数"菜单,则弹出如下的画面:

参数	图形	程序 调	整向导	通信设定
打开CNC参数		×		
来自文件	打开已存在的参	数文件		
在线	│ 从CNC侧读参数			
取消)			

图 6: 参数初始画面

点击"在线",则自动读取 NC 的参数,并显示如图 7 所示的参数画面。

1. 系统设定画面

<mark>P</mark> 参数 - Untitled(联机:Path1)	
文件(E) 编辑(E) 移动(M) 窗口(W) 帮助(E	0
● <u>5V</u> ● SP 组(G) 系统设定 CNC选择	▼ 轴 × ▼ ● 参数提示
抑制形状误差 □ 先行控制 ☑ AI先行控制 (AIAPC) ☑ AI轮廓控制 (AICC)	 轴控制 总的 0 → 轴 ✓ 进给轴同步控制 ○ 双位置反馈 ✓ 双电机驱动控制 ● 电子齿轮箱(EGB) ■ 串联减振控制
加减速 ✓ 插补后直线加减速 ✓ 插补后钟形加减速 ✓ 预读插补前铃型加减速 ✓ 快速进给钟形加减速	 其它 ✓ 异常扰动扭矩检测 □ 电极位置检测 □ 双安全检查

图 7:参数系统设定画面

参数画面打开后进入"系统设定"画面,该画面的内容不能进行改动,但是可以检查该系 统在抑制形状误差、加减速以及轴控制等方面都有哪些功能,后面的参数调整可以针对这些 功能来进行。

2. 轴设定

<mark>P</mark> 参数 - Untitled(联机:Path1)	
文件(E) 编辑(E) 移动(M) 窗口(₩) 帮助(H)	
 ● SV ○ SP 组(G) → 報 X ▼ ● 参数 反馈设定 AMR 设定 标准参数设定 	效提示
[10倍设定单Ⅳ(×10)] [10倍设定单Ⅳ(×10)]	
CMR 2 🛃 检测单位 1.000um 速度脉冲数	8192 🛨
FFG分子(N) 1 📫 位置脉冲数	12500 🕂
FFG分母(M) 100 🕂 位置脉冲变换系数	0 ≑
移动方向 参考计数器容量	10000 🕂
 ○ cw ○ cw 参考计数器(分母) 	0
系统结构	
□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□	转
🗌 🗖 直线电机 🛛 使用DD电机 🗌 绝对位置检测器 🔲 绝对位	置建立
□ 使用RCNxxx □ 转动数数据清零 数据掩码位数	0 🛨

图 8: 轴设定画面

轴设定画面主要用于分离式检测器的有无、旋转电机/直线电机、CMR、柔性进给齿轮等的设定。这些内容在第二节已经基本设定完毕,此处只需要检查以下几项:

电机代码是否按 HRV3 初始化 (电机代码大于 250)。

电机型号与实际安装的电机是否一致。

放大器 (安培数)是否与实际的一致。

检查系统的诊断 700#1 是否为 1 (HRV3 OK),如果不为 1,则重新初始化伺服参数 并检查 2013#0=1 (所有轴)

3. 加减速一一般控制

图 9: 一般控制的时间常数

用于设定各伺服轴在一般控制时候的加减速时间常数和快速移动时间常数。一般情况 下,时间常数选择直线型加减速,快速进给选择铃型加减速,即T1、T2都进行设定。如果 不设定T2,只设定T1,则快速进给为直线型加减速,冲击可能比较大。

注意各个轴要分别进行设定,各个轴的时间常数一般设定为相同的数值。

相天参数	:			
参数号		意义	标准值	调整方法
1610		插补后直线型加减速	1	
1622		插补后时间常数	50-100	走直线
1620		快速移动时间常数 T1	100-500	走直线
1621		快速移动时间常数 T2	50-200	走直线

4. 加减速-AI 先行控制/AI 轮廓控制

如果系统有 AI 轮廓控制功能(AICC)(可通过图 2 检查是否具备),则按照 AICC 的菜 单调整,如果没有 AICC 功能,则可以通过"AI 先行控制"(AIAPC)菜单项来调整。二者 的参数号及画面基本相同,在这里合在一起介绍(斜体表示 AIAPC 没有的选项),在实际调 试过程中需要注意区别。

a) 时间常数

图 10: AICC 的时间常数

注意:这里的时间常数和图 9 不同,当系统在执行 AICC 或 AIAPC (G5.1Q1 指令生效)时才起作用。

图 10 中的最大加速度计算值,是作为检查加减速时间常数设定是否对出现加速度过大现象,一般计算值不要超过 500。

相关参数:

参数号	意义	标准值	调整方法
1660	各轴插补前最大允许加速度	700	
1769	各轴插补后时间常数	32	方带 1/4 圆弧
1602#6	插补后直线型加减速有效	1	
1602#3	插补后铃型加减速有效	1	

<mark>7055#4</mark>	钟型时间常数改变功能
1772	<i>钟型加减速时间常数T</i> 2
7066	插补前铃型加减速时间

<mark>1/0</mark>

AICC 走直线

·数T2 64 10000 型加减速时间常数改变 ベト 月川 七文 功能参考速度

b) 拐角减速

<mark>P</mark> 参数 - Untitled(联机:Path1)	
文件(E) 编辑(E) 移动(M) 窗口(W) 帮助(H)	
● SV O SP 组(G) +AI轮廓控制 ▼ 轴	x ▼ Ø 参数提示
时间常数 拐角减速 园弧加速度减速 加速度减速 其他被	段定
 拐角减速 ✓ 速度差减速 允许速度差 500.000 (mm/min) 	

图 11: 拐角减速

通过设定拐角减速可以进行基于方形轨迹加工的过冲调整。允许速度差设定过小,会导 致加工时间变长。如果对拐角要求不高或者加工工件曲面较多,应该适当加大设定值。

相	关参数:	

参数号	意义	标准值	调整方法
1783	允许的速度差	200-1000	AICC 走方
c)圆弧加速度减速			

<mark>P</mark> 参数 - Untitled()戻れ	(i: Path1)		
文件(E) 编辑(E) 移动	b(M) 窗口(W) 帮助(H)		
● SV ● SP 组(G)	+AI轮廓控制	▼ 轴 × ▼	▼ 参数提示
时间常数 拐角减速	回弧加速度减速 加速度调	速 其他设定	
─园弧插补加速度减速 		10 (m/min)	
最大加速度	580.000 (mm/sec^2)	"	
最小进给速度限制	100.000 (mm/min)	L ⁰ 2 半径	0 40 80 80 100 (mm)

图 12 圆弧加速度减速

相关参数:			
参数号	意义	标准值	调整方法
1735	各轴圆弧插补时最大允许加速度	525	方带 1/4 圆弧
1732	各轴圆弧插补时最小允许速度	100	
d)加速度减速			

P 参数 - Untitled(联机:Path1) 文件(E) 编辑(E) 移动(M) 窗口(W) 帮助(H)	
 ● SV ○ SP 组(G) +AI轮廓控制 中 和 X ▼ Ø 参数提示 时间常数 拐角减速 圆弧加速度减速 加速度减速 其他设定 	
最大加速度 580.000 (mm/sec^2)	-
允许的最小进给速度 100.000 (mm/min) 100.000 (mm/min) 100.000 (mm/min) 平位 0 20 40 80 80 ¥位 40 80 80 ¥位 40 80 80 ¥位 40 80 80 ¥位 40 80 80 ¥位 40 80 80 ¥位 40 80 80 ¥位 40 80 80 ¥位 40 80 80 ¥位 40 80 80 ¥位 40 80 80 ¥位 40 80 80 ¥位 40 80 80 ¥位 40 80 80 ¥位 40 80 80 ¥位 40 80 80 ¥位 40 80 80 ¥位 ¥位 40 80 80 ¥位 ¥位 40 ¥位 40 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0<	100 m)
图 13 加速度减速	
相关参数: 参数号 意义 标准值 调整方法 1737 冬轴 AICC/AIAPC 控制中最大分 525 方带 1/4 圆弧	
1737	
e)其他设定	
₽ 参数 - Untitled(联机:Path1)	IX
文件(E) 编辑(E) 移动(M) 窗口(W) 帮助(H)	
● SV ● SP 组(G) +AI轮廓控制 ■ 轴 × ▼ 参数提示	
时间常数 拐角减速 园弧加速度减速 加速度减速 耳他设定 	
□ 不依移动的方向改变进给率	
◎ 1秒以上加速时间精度优先	
○ 1秒以上加速时间速度优先	

图 14: 其他设定

此界面一般采用默认值。

5. 电流控制

P 参数 - Untitled(联机:Path1)	
文件(E) 编辑(E) 移动(M) 窗口(W) 帮助(H)	
● SV ● SP 組(G) 电流控制 ■ 轴 X ▼ 参数提示 HRV设定 电流环增益 电流相位控制1 电流相位控制2 电流稳定 扭矩极限	
 电流控制 ○ HRV1 ○ HRV2 ● HRV3 ○ HRV4 ○ 其他 高速HRV附加设定 □ HRV扩张功能有效 ✓ 切削/快速进给速度增益有效开关 □ HRV3经常有效(包括切削时) 	
 电流増益倍率(%) (高速HRV) 注度増益倍率(%) (高速HRV) 	
- 死区设定 - 死区宽度 死区补偿(倾斜) - 8 (us)	

图 15: 电流控制

相关参数:			
参数号	意义	标准值	调整方法
2202#1	切削/快速 VG 切换	1	
2334	电流增益倍率提高	150	AICC/HRV3 走直线
2335	速度增益倍率提高	200	AICC/HRV3 走直线
声 南 按 出			

6. 速度控制

如果伺服参数是按照 HRV3 初始化设定的,则下图中蓝色标记的部分已经设定好了,不 需要再设定,只要检查一下就可以了。速度增益和滤波器在后面的频率响应和走直线程序时 需要重新调整。

注:这些参数都是需要各个轴分别设定。对于比例积分增益参数不需要修改,请按标准 设定(初始化后的标准值)。

P 参数 - Untitled(联机:Path1)			
文件(E) 编辑(E) 移动(M) 窗口(W) 帮助(H)			
● SV ● SP 组(G) +基本速度控制 ■ 轴 X ■ 参数提示			
速度环 振动抑制功能 (停止时)			
速度控制			
速度が増益 积分増益(PK1V) 39 ÷ 指数部 0 ÷ = 最终设定值 39			
比例增益(PK2V) -350 - 指数部 0 - = 最终设定值 -350			
不完全积分系数(PK3V) 0			
速度增益(%) 200 🛨			
高速补偿功能			
● 速度环比例高速处理功能			
○ 加速度反馈 0 → 切削时速度增益(%) 150 →			
G05.4Q1増益时倍率(%) 200 - □			
图 16: 速度控制			
参数号 意义 标准值 调整万法 (2021 对应) 速度描述 200 主直线 频素响应			
22021 利益/ 速度增量 200 定量线, 频率制益 2202#1 切削/快速进给速度增益切换 1			
2107 切削增益提高% 150 走直线			
P参数 - Untitled(联机:Path1)			
● SV O SP 组(G) +基本速度控制 ▼ 轴 X ▼ ▼ 参数提示			
高速补偿功能			
- 比例増益下降 (停止时)			
■ 町田切能 标准 400 III			

图 17:停止时的振动抑制

加速度反馈:此功能把加速度反馈增益乘以电机速度反馈信号的微分值,通过补偿转矩

指令 TCMD,来达到抑制速度环的振荡。电机与机床弹性连接,负载惯量比电机的惯量要 大,在调整负载惯量比时候(大于 512),会产生 50-150HZ 的振动,此时,不要减小负载惯 量比的值,可设定此参数进行改善。参数 2066 设定在-10 到-20 之间,一般设为-10。

比例增益下降:通常为了提高系统响应特性或者负载惯量比较大时,应提高速度增益或 者负载惯量比,但是设定过大的速度增益会在停止时发生高频振动。此功能可以将停止时的 速度环比例增益(PK2V)下降,抑制停止时的振动,进而提高速度增益。

N 脉冲抑制:此功能能够抑制停止时由于电动机的微小跳动引起的机床振动。当在调整时,由于提高了速度增益,而引起了机床在停止时也出现了小范围的震荡(低频),从伺服 调整画面的位置误差可看到,在没有给指令(停止时),误差在0左右变化。使用单脉冲抑 制功能可以将此震荡消除,按以下步骤调整:

a)参数 2003#4=1,如果震荡在 0-1 范围变化,设定此参数即可。

b) 参数 2099, 按以下公式计算。标志设定 400。

7. 形状误差消除-前馈

图 18: 前馈

相关参数:			
参数号	意义	标准值	调整方法
2005#1	前馈有效	1	
2092	位置前馈系数	9900	走圆弧
2069	速度前馈系数	50-150	走直线,圆弧

8. 形状误差消除一背隙加速

P 参数 - Untitled(联机:Path1)
文件(E) 编辑(E) 移动(M) 窗口(₩) 帮助(H)
 ● SV ● SP 组(G) +背隙加速 ▲ 轴 × ▼ ▼ 参数提示 反向间隙加速 2段反向间隙加速 1 2段反向间隙加速 2 2段反向间隙加速 3 静摩擦补作 ▲ ▲ ✓ 反向间隙加速有效 □ 2段加速有效 □ 切削时加速Th能
 反向间隙补偿 反向间隙补偿 1 → 1.000um □ 不能使用位置反向间隙补偿.
反向间隙加速 加速度 100 ÷ 加速度(>+) 0 ÷ 计数器数 20 ÷ 40ms
☑ 加速停止 加速停止定时 月 → 0.000um

图 19: 背隙补偿参数画面

相关参数:			
参数号	意义	标准值	调整方法
2003#5	背隙加速有效	1	
1851	背隙补偿	1	调整后还原
2048	背隙加速量	100	走圆弧
2071	背隙加速计数	20	走圆弧
2048	背隙加速量	100	走圆弧
2009#7	加速停止	1	
2082	背隙加速停止量	5	
1851 2048 2071 2048 2009#7 2082	背隙补偿 背隙加速量 背隙加速计数 背隙加速量 加速停止 背隙加速停止量	1 100 20 100 1 5	调整后还原 走圆弧 走圆弧 走圆弧

注意:对于背隙补偿(1851)的设定值是通过实际测量机械间隙所得,在调整的时候为 了获得的圆弧(走圆弧程序)直观,可将该参数设定为1,调整完成后再改回原来设定值。 9. 超调补偿
文件(E) 编辑(E) 移动(M) 窗口(W) 帮助(H) ● SV ○ SP 组(G) 超调补偿 ● 超调补偿 ● 超调补偿 ● 超调补偿 ● 超调补偿 ● 控制 * 2 有效 超调补偿 ● 控制 * 各数提示 超调补偿 * 経済 * 経済 * 経済 * 経済 * 経済 * 修行数 * 修有效标准(脉冲) * (除有效标准(脉冲) * (除有效标准(脉冲) * (快) * 度增益(%) * (%) <	<mark>P</mark> 参数 - Untitled(联机:Path1)	×
● SV ● SP 组(G) 超调补偿 ● 轴 × ● 参数提示 超调补偿 ● 类型 2 有效 速度控制 ● 超调补偿 ● PI 控制 ● PI 控制 **倍计数 50 ● ● **倍有效标准(脉冲) ● ● ● * ● ● <	文件(E) 编辑(E) 移动(M) 窗口(W) 帮助(H)	
✓ 超调补偿 类型 2 有效 速度控制 超调补偿 G	 ● SV ● SP 组(G) 超调补偿 超调补偿 	▼ 轴 X ▼ Ø 参数提示
	 ✓ 超调补偿 ✓ 超调补偿 不完全积分系数(PK3V) 32300 ·· 补偿计数 50 ·· * 补偿有效标准(脉冲) 	速度控制 ○ I-P 控制 ● PI 控制 速度环増益 积分増益(PK1V) 39 ÷ 比例増益(PK2V) -350 ÷ 速度増益(%) 200 ÷ 「切削/快速进给速度増益切換 切削时速度増益(%) 切削时速度増益(%) 150 ÷ G05.4Q1 超高精度时倍率(%) 200 ÷

图 20: 超调补偿画面

在手轮进给或其它微小进给时,发生过冲(指令1脉冲,走2个脉冲,再回来一个脉冲),可按如下步骤调整。

1) 单脉冲进给动作原理:

移动指令	1个脉冲	──→ 时间
位置偏差量	1个脉冲	──→ 时间
速度指令 (Vcmd)	↓1*Kp Kp: 伺服环增益	──→ 时间

在积分增益PK1V稳定的范围内尽可能取大值。

③ 从给出1个脉冲进给的指令到机床移动的响应将提高。

- 根据机床的静摩擦和动摩擦值,确定是否发生过冲。
 - ▶ 机床的动摩擦①大于电动机的保持转矩时,不发生过冲。
- 2) 使用不完全积分 PK3V 调整 1 个脉冲进给移动结束时的电机保持转矩。

- 3)参数: 2003#6=1, 2045=32300 左右, 2077=50 左右。
 注:如果因为电机保持转矩大,用上述参数设定还不能克服过冲,可增加 2077
 的设定值(以 10 为单位逐渐增加)。如果在停止时不稳定,是由于保持转
 - 矩太低, 可减小 2077 (以 10 为倍数)。
- 10. 保护停止

<mark>P</mark> 参数 - Untitled(th1)	Ľ
文件(E) 编辑(E) 移动(M)	窗口(₩) 帮助(H)	
⊙ SV C SP 组(G)	保护停止 轴	
轴停止功能		
 制动器控制功能 ▼ 制动器功能有效 制动器控制 	计时器(ms) 200 📑	

图 21: 保护停止画面

一般重力轴的电机都带有制动器,在按急停或伺服报警时,由于制动器的动作时间而产

生的轴的跌落,可通过参数调整来避免。

参数调整: 2005#6=1,2083 设定延时时间(ms),一般设定 200 左右,具体要看机械重力的多少。如果该轴的放大器是 2 或 3 轴放大器,每个轴都要设定。时序图如下:

3.4 图形画面

图形画面主要用来进行测量数据的显示和分析。主要包含横轴时间方式、XY方式、圆 弧轨迹误差放大方式(Circle Mode)、任意轮廓轨迹误差放大方式(Contour mode)、频谱分 析方式(Fourier mode)和速度环频率特性测量方式(Bode mode)。其中一个重要的功能就 是利用 Bode mode 进行频率特性分析,找出机床各轴的共振点进而进行滤波。

在图形画面,选择"工具"->"频率响应",然后点"测量",选择需要测量的轴(X,Y,Z 等),然后按"开始"就可以自动测量了。 测量结束后会得到如图 22 所示的波形。

图 22: 频率响应

通过观察上述波形,可以得到共振点的中心频率、带宽等。如果是低频率振动,可以设 定参数 2067,利用 TCMD 滤波器来抑制振动。设定值跟截止频率有关系,一般设定在 2000 左右,具体如下表:

截止频率	60	65	70	75	80	85	90
设定	2810	2723	2638	2557	2478	2401	2327
截止频率	95	100	110	120	130	140	150
设定	2255	2158	2052	1927	1810	1700	1596
截止频率	160	170	180	190	200	220	240
设定	1499	1408	1322	1241	1166	1028	907
截止频率	260	280	300				
设定	800	705	622				

如果是高频振动, 「	则可以利用 HRV 滤波器来	消除高频振动点。	
<mark>₽</mark> 参数 - Untitled(联	I:Path1)		
文件(E) 编辑(E) 移詞	カ(M) 窗口(₩) 帮助(H)		
● SV ● SP 组(G)	+滤波器	▼ 轴 × ▼	☑ 参数提示
机械共振抑制 消除排	詞		
	中心频率带宽阻风	2	
HRV 滤波器1	290 🗧 80 🗧	20 🕂	
band elin	ination filter	0%	
HRV 滤波器 2		0 ÷	

图 23: HRV 滤波器参数设定

消除掉共振点后,就可以设定更高的速度增益。然后需要重新测量频率响应,如此反复 进行,直到满足要求。

注意:设定参数时一定要选择相应的轴。设定完后一定要再测一遍。如果有两个或以上 共振点,可以使用多个滤波器来抑制(每个轴有四个滤波器)。

图 24: 频率响应曲线要素

频率响应的4点要求:

- A 响应带宽(也就是幅频曲线上 0dB 区间)要足够宽,主要通过调整伺服位置环增益(PRM 1825),速度环增益(PRM 2021)参数来实现,使之越宽越好。
- B 使用 HRV 滤波器后机床高频共振被抑制,此时高频共振频率处的幅值应低于 —10dB。
- C 在截止频率(幅频曲线开始下降的地方对应的频率)处的幅值应该低于 10dB。
- D 在 1000Hz 附近的幅值应该低于-20dB。

3.5 程序画面

利用程序画面可以自动生成典型的测试程序,包括1轴的直线加减速、圆弧、方、方带 1/4 圆弧、刚性攻丝和 Cs 轮廓,然后可以将相应的子程序和主程序发送到 NC,通过 NC 运 行该程序,由图形画面采集相应的数据以对调试结果进行分析。

直线加减速: 选择程序画面,按下述图示步骤(1-10)完成一个程序生成并传送到 NC 中。

ᡂ程序 - Untitled(联机:Path1)			_ 🗆 X
文件(E) 编辑(E) 御览(Y) 工具(I)	系统(<u>P</u>) 帮助(H) 9, 10	
	思思路	径1 1	
X-Y 20.0000mm/div	程序模式	直线移动	M系 🔽
	2 横轴 ×	✓ 纵轴 / ▼	G代码
	「 轴进给 C 切削进	给 💿 快速移动	О вадс
	移动长度	100 半径	10
	速度	4000 主轴速度	1000
G91G94 N1	攻丝M代码	M29 重复 4	1
N2G00X100.000 G04X1.		龙 始坐标	30
G00X-100.000 G04X1.	高精度控制	模式 正常 🗾 🗾]
N999G04X1.	🗌 使用高速	EHRV电流控制	取消
	触发序号N	5	适用
程序号 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<u> </u>	6 7	

图 25: 直线移动程序画面

例如:选择X轴,切削进给,高精度模式(AICC有效),使用HRV3控制(图25所示), 脉冲序号 N=1(即程序中的N1触发采样,对应图形画面下的通道设定的触发序号)。这些 设定正确后,按适用(7),则在右边出现程序文本,通过按[输入](8),出现对话框,显示 NC中存储的程序号,输入1个里面没有出现的号码(比如:111,以后每次新做成的程序 可以都是这个号)。发送该程序到NC中(9),NC把这个程序作为子程序,由于是在MDI 方式下调试,所以主程序只是MDI方式下调用一个子程序,程序运行一遍后就没有了,所 以每次执行程序时,都需要重新发送一遍主程序。而只要不修改程序,子程序就不需要重新 发送。

注意在程序发送时必须是 MDI 方式, POS 画面, 且后台编辑方式关闭。如果修改程序 后再发送到相同的程序号,程序保护开关必须打开。

对于直线运动程序测试最好分为:各个轴快速移动,切削一般控制,切削 AICC,切削 AICC+HRV3 四种情况。

图形画面的通道设定如下图所示(XTYT 方式)。

图形设定	<u>?</u> ×
详细	
测量设定 操作演示 比例(Y-Time) 比例(XY) 比例(圆弧	5]
测定数据点(E) 采样周期(伺服)(Y) 采样周期(主轴)(5) 采样周期(PMC)(M) Imsec ▼ Imsec ▼ Imsec ▼	BIN互换 修改(⊆) ◎ 問助回原点
采样周期 (I/O Link)(I)	自动比例尺
注释1(1)	
注释2(2)	○ 总是
时间和日期	
	数据切换(<u>D</u>)时间切换(<u>T</u>)
Axis Kind Unit Coef	Meaning Origin
CH1 AI (1) SPEED 1/min 3750.0	000 电机速度(SPEED) 0.000(
CH2 A1 (1) TCMD A(p) 100.00	1000 转矩指令(TCMD) 0.000(

图 26: 直线移动图形设定画面

对于测定数据点,主要是看采集的点是否足够,但太多会影响采集时间,一般设定 10000。采样周期为1ms,触发顺序号为1(与程序画面N1对应,图25的步骤6),通道1, 2的数据类型按照上图(图26)设定,注意换算系数和换算基准不要修改。

设定完成后,开始采样。如下所示:

图 27: 直线移动数据测定

先按" ♥」"再按" ▶ "开始采样,如果主程序没有发送,这时候再到图形界面按主程序 发送按钮" ♥ "发送完毕,直接按机床面板上的"循环起动"按钮,当 NC 程序运行到 N1 时

自动采样数据(TCMD, SPEED)。

图 28: 直线移动波形显示

走直线程序主要观察 TCMD、SPEED、ERR 的波形。如果加减速时间常数太小或者增益设定太高,则上图中的 TCMD 波形会有较大的冲击或波动,好的波形为:在加减速的地方电流波形平滑过渡,而在直线部分从头到尾幅度应该相同,如果逐渐变粗,表示增益太高。

2. 圆弧程序

一般如果对于直线移动调整的比较好,则圆弧的调整相对来说就简单多了,程序生成如下所示:

ᡂ程序 - Untitled(联机:Path1)		_ 🗆 🗙
文件(E) 编辑(E) 御览(∀) 工具(T)	系统(P) 帮助(H)	
	<u>嗯</u> 卿 路径 1 💌	
X-Y 10.0000mm/div	程序模式。 圆弧程序	M系 I
	横轴 📃 纵轴 🖌	G代码──
	轴进给 ● 切削进给 ● 快速移动	СА Свідс
	移动长度 10 半径	10
	速度 2000 主轴速度	1000
G91G94 N1	攻丝M代码 M29 重复	2
N2G05.1Q1 G05.4Q1	起始坐标	30
G17G02I-10.000F2000.000 G17G02I-10.000F2000.000	高精度控制模式 AICC/AI Nano	√
G05.4Q0	▼ 使用高速HRV电流控制	取消
G05.1Q0 G04X1.	触发序号N	1 适用
程序号 输入		

图 29: 圆弧程序的程序生成

操作步骤和上述直线移动差不多,图形模式选择"Circle",注意横轴和纵轴的选择。假如

横轴 X, 纵轴 Y, 则 X 轴中心为-10。

	属性(P).				数据切换(<u>D</u>) 时间切	J换(I)
	Axis	Kind	Unit	Coef	Meaning	Origin
CH1	🗹 X (1)	POSE	mm	0.0010000	位置反馈	0.000(
CH2	Y (2)	POSE	mm	0.0010000	位置反馈	0.000(
СНЗ		6 %				
CH4						
CH5		CH1 CH2	снз сн4	СН5 СН6	сн7 Сн8	
CH6		<u></u> አተ				
CH7	IH II	714			□ 扩展地址(E)	0
CH8		种类	POSF 💌		切 换(s)	0
		单位	mm 💌		(<u>5</u>),4104	J
		换算系数	0.001	(物理值.)	─ 说明───────────────────────────────────	
		换算基准	1	(原始数据值.)	物理数值需设定为各脉冲	中宽度.
		原始值	0			

图形设定 ?	×
详细	
测量设定 操作演示 比例(Y-Time) 比例(XY) 比例(圆弧)	
图形模式 CIRCLE ▼	
操作 输入1 输入2 表示单位 坐标变换 倾斜角	
Draw1 Circle 🔽 ACQ:CH1 🔍 ACQ:CH2 💌 mm 💌 🔍 N 🔿 P 🔿 A 📃 O	

图 30: 圆弧程序通道设定

对于通道的设定,注意换算系数为0.001,基准为1,不能错,否则圆弧不能正常显示。 另外,对于中心点的设定,由于程序横轴中心点在-10处,所以应该设定如下:

图形设定	X
详细	
测量设定 操作演示 比例(Y-Time) 比例(X)(比例(圆弧))	
橫轴中心 -10.000000 (mm)	
纵轴中心 0.000000 (mm)	
半径 10.000000 (mm)	
分区 0.010000 (mm)	
比例放大 1.000000	
□ 波峰/波谷显示	

图 31:圆弧程序通道的图形中心设定 维移动一样 图形目云如下(圆弧方式)

其它操作方法和直线移动一样。图形显示如下(圆弧方式):

图 32: 圆弧测试程序结果显示

如果圆弧显示变形,可能是由于背隙补偿造成,可在测试前将参数 1851 改为 1;如果圆弧的半径误差比较大,可以设定前馈系数利用前馈功能来缩短由于伺服系统的跟踪延迟导致的误差;如果象限有凸起或者过切,可以通过调整速度增益和背隙加速等参数来调整。注意对于静态摩擦较大的机床,不要仅仅通过 SERVO GUIDE 的图形来判断象限凸起的程度,而应该和 DDB(球感仪)同时考虑。

3. 走方程序

方形程序主要是进行四角的调整,对于那些对拐角要求较高的用户,可以通过该程序来 检查参数设定是否合适。

ᡂ 程序 - Untitled(脱机)	
文件(E) 编辑(E) 御览(У) 工具(I) 系	系统(<u>P</u>) 帮助(<u>H</u>)
	粤 및 路径 1 ▼
X-Y 10.0000mm/div	程序模式 走方程序 M系 🔽
	描轴 ×
	轴进给 ○ A ○ 切削进给 ○ 快速移动
	单边移动距离 20 半径 10
	速度 2000 主轴速度 1000
G91G94	攻丝M代码 M29 重复 1
N2G05.1Q1 G05.4Q1	起始坐标 30
G01X20.000F2000.000	高精度控制模式 AICC/AI Nam
G01X-20.000F2000.000	▼ 使用高速HRV电流控制 取消
G05.4Q0	触发序号N 1 适用
程序号 输入	

图 33: 走方程序的程序生成

将需要观看的拐角放到图形的中心,然后连续按"u",则显示如下:

对于走方程序,主要从拐角减速允许速度差、切削进给时间常数和速度前馈三方面着手 进行调整。对于对拐角要求不太高的加工,没有必要追求拐角误差精度,因为片面的追求减 小拐角误差,会影响加工速度。

图形模式选择"XY",通道的设定与图 31 相同。

4. 方带 1/4 圆弧

<mark>颐</mark> 程序 - Untitled(脱机)			
文件(E) 编辑(E) 御览(У) 工具(I) 系	统(P) 帮助(H)		
	粤 🗐 🛱 🛱		
X-Y 10.0000mm/div	程序模式	方带1/4圆弧	MĀ 🔽
	横轴 🛛	────────────────────────────────────	- G代码
	轴进给 €切削进给	C 快速移动	ОА Овядс
	单边移动距离	20 半径	5
	速度	2000 主轴速度	1000
G91G94	攻丝M代码	M29 重复	1
N2G05.1Q1 G05.4Q1		起始坐标	30
G01X20.000F2000.000	高精度控制模式	🕻 🛛 AICC/AI Nano 👘 💌	
G01Y-20.000F2000.000	☑ 使用高速HR	V电流控制	取消
G17G02X-5.000Y-5.000R5.000F200(触发序号N	1	适用
程序号		,	

图 35: 方带 1/4 圆弧程序的程序生成

图形模式设定为 CONTOUR (轮廓)方式。通道设定与图 31 相同, 波形显示如下图:

图 36: 方带 1/4 圆弧程序的图形显示

速度和位置增益,插补后时间常数,圆弧半径减速等参数都会影响这个轮廓误差。注意: 右边的"参考"设定为有效(显示编程轨迹),通过按"u"或"d"来改变显示刻度(放大或缩小)。

5. 刚性攻丝:

ᡂ程序 - Untitled(脱机)	
文件(E) 编辑(E) 御览(Y) 工具(I)	系统(<u>P</u>) 帮助(<u>H</u>)
D 🖉 🖓 🖨 🔏 X B B	粤 副 路径 1 ▼
X-Z 10.0000mm/div	程序模式 则性攻丝 M系 🔽
	● 切削进给 ○ 快速移动 ○ B或C
	Tap Depth 20 R点 10
	速度 2000 主轴速度 2000
G91G94 N1	攻丝M代码 M29 重复 1
N2M2952000 G84Z-20.000R-10.000F2000.000K1	起始坐标 30
G80 G04X1.	高精度控制模式 正常 🗾
N999G04X1.	■ 使用高速HRV电流控制 取消
	触发序号N 1 适用
程序号 输入	

图 37: 刚性攻丝程序生成

参数 3700#5 需要设定为 1, 输出刚性攻丝同步误差。图形方式设定如下:

	属性(P)				数据切换(D) 时间切割	奂(<u>T</u>)
	Axis	Kind	Unit	Coef	Meaning	Origin
CH1	A3 (3)	SPEED	1/min	3750.0000	电机速度(SPEED)	0.0000
CH2	🗹 A3 (3)	SYNC	pulse	1.0000000	同步偏差	0.0000
СНЗ	51 (-1)	TCMD	A(p)	100.00000	转矩指令	0.0000
CH4	51 (-1)	SPEED	1/min	1.0000000	电机速度	0.0000
CHE						

图 40: 刚性攻丝测量设定

图 38: 刚性攻丝波形显示

原则上,误差不能大于 200,对于皮带传动的主轴,由于传动误差(特别是在底部的加减速)不能完全监测到,所以,在实际调试中,应尽量减小这个误差值(小于 60 左右)。

3.6 高精度参数设定的快捷方法

对于上述的高精度相关参数设定,如果没有仔细调整过,可以有一个快捷方法设定成标 准参数,能满足一般的要求。

按功能键[SYSTEM],然后按右扩展键几次。出现"参数设定"[PRMTUN]菜单,按该软键,会出现如下画面:

移动光标到"高精度设定",然后按"操作",选择"初始化"[INIT],即可进行高精度参数

标准值的设定,如下图所示。:

编辑 ***	* ***	***		08:58:04	
选择		初	始化		

如果要检查或者单独修改详细的参数,可在上图中选 [选择]软键,进入高精度参数 的设定画面。这些参数主要分为两组,第一组是时间常数相关的参数,第二组是自动加减速 相关的参数。

高精度设定(时间常数)	高精度设定(自动加减速)
X 轴 PAGE: 1/4 快进直线型TC 100 <t< th=""><th>X 轴 PAGE: 3/4 圆弧容许加速度 0.000 圆弧下限速度 0.000 月减速速度 0.000 最大切削进给速度</th></t<>	X 轴 PAGE: 3/4 圆弧容许加速度 0.000 圆弧下限速度 0.000 月减速速度 0.000 最大切削进给速度
	圆弧插补的允许加速度。
A>^	A>^
MDI **** *** 初始化 初始化 1	MDI **** *** 初始化 初始化 4

注意点:高精度参数需要配合 G5.1Q1 的使用才能得到更好的加工性能;如果加工模具,则需要使用 SERVO GUIDE 进行仔细调整;对于特定的机床,有些参数还需要手动修改,比如:加减速时间常数(快速,切削进给);对于大型的机床,或者机械刚性较差的机床,必须适当加大时间常数的设定。

3.7 HRV3 使用注意事项

1. 对于轴卡,如果使用 HRV3 控制,一条 FSSB 光缆只能最多连接 4 个轴放大器(假定都 是单轴放大器)和一个独立位置检测器接口(必须是 C205 型)。

注: 同一条 FSSB 线上所有伺服轴必须使用相同的 HRV 控制方式 (FSSB 周期=电流采 样周期),如上述的 1-4 轴必须都是 HRV3(62.5us),而 5 轴可以使用 HRV2/1 (125us/250us)。

2. 伺服电机转矩限制,如果使用 HRV3,电机的最大电流钳制在放大器的最大电流值的 70%。

3. HRV3 控制模式,在用户的加工程序中,必须指定 HRV3 控制模式: G05.4Q1。否则为一般控制模式 (HRV3 不起作用)。如下所示:

4. HRV3 方式的诊断,可通过诊断号 700 观察。

如果参数设定正确(电源重新启动后),并且相应的硬件支持 HRV3,则在诊断 700#1 (HOK)变为1,表示可以使用 HRV3 功能。在 HOK=1 的状态下指令 G5.4Q1 时,诊断号 700 的位 0 (HON)在切削进给指令变为1,这表示电流控制周期为高速,使用了 HRV3 增益倍率。

ICTORE POSITION	00004 N00000
X 0.000 Y 0.000	F O ROAT
CHODEL) CHO	2500 X 0 0 0 1
ABS ASIL ALL	HD1 ++++ BETCHER (TEC 16-35-IPT) PHRNM DGHOS PINC SITSTEN (OPRI)

如果诊断 700#1 没有变为 1,则检查如下几点:

- 1) 伺服软件: 必须为 90B0 以上, 比如 9096 不能按 HRV2/3 设定。
- 2)硬件: 伺服放大器应该为 αi/βi 系列的,如果有全闭环,全闭环接口必须是高速接口(A02B-0236-C205)。
- 3) 电机代码必须按照 HRV2/3 初始化 (参照前面电机代码表)。
- 4) 伺服参数 2013#0(高速 HRV) 必须设定为 1。
- 5) FSSB 设定一定要在电机代码为 HRV2/3 下重新设定的。

5. 当 HRV3 有效时,从电机一侧能听到较高频率的噪音(相对于通常控制时候),在 HRV2 控制时候也有这种声音,这是由于控制电机的电流频率变高了,是正常的声音,不会对电机 和机械构成损坏。

6. 其它需要调整的内容,如主轴定向、刚性攻丝、CS轮廓控制等参数设定,参见相应的章节。

间延时们及相							
高速高精度	APC	AI-APC	AICC	AI nano	HPCC	AI-HPCC	AI nano
功能				CC			HPCC
0i-mate MD		有					
0i-M D		有	有				
21i-MB	有	有	有	有			
18i-MB	有		有	有	有	有	有
16i-MB	有		有	有	有	有	有
插补前加减	线性	线性	线性/铃	线性/铃	线性/铃	线性/铃	线性/铃
速			形	形	形	形(各轴)	形(各轴)
自动拐角减	有	有	有	有	有	有	有
速							
基于圆弧半							
径速度控制	有	有	有	有	有	有	有
基于加速度							
速度控制	无	有	有	有	有	有	有
基于切削负							
载度控制	无	无	无	无	有	有	有
加加速度控	无	无	16/18I	16/18IM	无	有	有

附录:高速高精度相关参数

高速高精度相关功能比较见下表:

制			MB 有	B有			
Nano 插补	无	无	无	有	无	无	有
5 轴加工功	无	无	无	无	无	有	有
能							
平滑插补	无	无	无	无	有	有	有
NURBS	无	无	无	无	有	有	有
附加硬件	不要	不要	不要	不要	RISC	RISC	RISC
预读程序段	1	15	40	180	200(选择	200	200
数					功能)		
程序代码	G08P1	G05.1Q1	G05.1Q	G05.1Q1	G05P100	G05P100	G05P100
			1		00	00	00

注意:

- 1. 由上述表中,可看到,使用什么系统可选择什么功能,比如 0IC/B 只能使用 AI APC (基本功能)和 AI CC(选择功能),他们之间的区别是插补前加减速类型(线性/铃型) 和预读程序段数(15/40)。
- 2. 关于程序中的 G 代码,一定要在程序的开头和结尾指定。否则参数调整后也不会有 好的效果。

各种功能对应参数设定:

1. AI 先行控制(G05.1Q1 配合)

参数	标准值	速度优	速度优	意义
号		先 1	先 2	
1432	-	-	-	各轴最大切削进给速度(mm/min)
1620		-	-	各轴快速直线型加减速时间常数(ms)
1621		-	-	各轴快速铃型加减速时间常数 T2(ms)
1769	32	16	16	各轴插补后时间常数(ms)
1660	700.0	2000.0	4000.0	各轴插补前最大允许加速度(mm/sec^2)
1783	400.0	500.0	1000.0	基于拐角速度在减速时的允许的速度差(mm/min)
1737	525.0	1500.0	3000.0	各轴 AICC/AIAPC 控制中最大允许加速度
				(mm/sec^2)
1735	525	1500.0	3000.0	各轴圆弧插补时最大允许加速度(mm/sec^2)

固定设定值的参数:

参数号	标准设定	参数含义
1602#6,#3	1,0	插补后加减速为直线型(使用 FAD 时设定)
1604#0	1,0	AICC 运行时程序中是否需要指定 G05.1Q1
1825	5000	位置增益
2003#3	1	PI控制有效
2003#5	1	背隙加速有效
2005#1	1	前馈有效
2006#4	1	在速度反馈中使用最新的反馈数据
2007#6	1	FAD(精密加减速)有效
2009#7	1	背隙加速停止有效
2016#3	1	停止时比例增益倍率可变有效
2017#7	1	速度环比例项高速处理功能有效
2021	128	负载惯量比(速度环增益倍乘比)
2067	1166	TCMD(转矩指令)过滤器
2069	50	速度前馈系数
2071	20	背隙加速有效的时间

2082	5 (1um)	背隙加速停止量
2092	10000	先行(位置)前馈系数
2107	150	切削用负载惯量比倍率(%)
2109	16	FAD 时间常数
2119	2(1um)	停止时比例增益可变用,判断停止电平
2202#1	1	切削,快速速度环增益可变
2202#2	1	1/2PI 电流控制只在切削方式有效
2203#2	1	1/2PI 电流控制有效
2209#2	1	FAD 直线型有效

如果使用 HRV3(高速 HRV)时设定的参数。

2013#0	1	HRV3 有效(伺服初始化的电机代码必须按照 HRV2/3 设定)
2013#2	1	1/2PI 电流控制只在切削方式有效
2334	150	高速 HRV 电流控制时电流环增益倍率(切削)
2335	200	高速 HRV 电流控制时速度环增益倍率(切削)

2. AI 轮廓控制(G05.1Q1 配合)

参数	标准值	速度优	速度优	意义
号		先 1	先 2	
1432	-	-	-	各轴最大切削进给速度(mm/min)
1620		-	-	各轴快速直线型加减速时间常数(ms)
1621		-	-	各轴快速铃型加减速时间常数 T2(ms)
1769	32	16	16	各轴插补后时间常数(ms)
1660	700.0	2000.0	4000.0	各轴插补前最大允许加速度(mm/sec^2)
1772	64	48	32	钟型加减速时间常数 T2(ms)
1783	400.0	500.0	1000.0	基于拐角速度在减速时的允许的速度差(mm/min)
1737	525.0	1500.0	3000.0	各轴 AICC/AIAPC 控制中最大允许加速度
				(mm/sec^2)
1735	525	1500.0	3000.0	各轴圆弧插补时最大允许加速度(mm/sec^2)

固定设定值的参数:

参数号	标准设定	参数含义
1602#6,#3	1,0	插补后加减速为直线型(使用插补前铃型加减速)
	1,1	插补后加减速为铃型(使用插补前直线型加减速)
1604#0	1,0	AICC运行时程序中是否需要指定 G05.1Q1
7055#4	0	钟型时间常数改变功能
1603#7	1	插补前加减速为铃型(0:插补前直线型)
7050#5	1	标准设定
7066	10000	插补前铃型加减速时间常数改变功能参考速度(mm/min)
1825	5000	位置增益
2003#3	1	PI 控制有效
2003#5	1	背隙加速有效
2005#1	1	前馈有效
2006#4	1	在速度反馈中使用最新的反馈数据
2009#7	1	背隙加速停止有效
2016#3	1	停止时比例增益倍率可变有效
2017#7	1	速度环比例项高速处理功能有效
2021	128	负载惯量比(速度环增益倍乘比)
2067	1166	TCMD(转矩指令)过滤器
2069	50	速度前馈系数
2071	20	背隙加速有效的时间

2082	5 (1um)	背隙加速停止量
2092	10000	先行(位置)前馈系数
2107	150	切削用负载惯量比倍率(%)
2119	2(1um)	停止时比例增益可变用,判断停止电平
2202#1	1	切削,快速速度环增益可变
2202#2	1	1/2PI 电流控制只在切削方式有效
2203#2	1	1/2PI 电流控制有效

如果使用 HRV3(高速 HRV)时设定的参数。

2013#0	1	HRV3 有效(伺服初始化的电机代码必须按照 HRV2/3 设定)
2013#2	1	1/2PI 电流控制只在切削方式有效
2334	150	高速 HRV 电流控制时电流环增益倍率(切削)
2335	200	高速 HRV 电流控制时速度环增益倍率(切削)

根据机床特性需要进行调整的参数:

参数号	调整开始设定值	含义	调整方法
2021	128	负载惯量比	在轴移动过程中,如果出
		(速度增益)	现振动,减小此值
1825	5000	位置增益	如果即使N2021为0时也
			不能消除振动,在所有轴
			上适当减小设定值
2048	100	背隙加速量	在轴的移动方向翻转处
			出现突起时,以 50 为刻
			度调大设定值,如果出现
			过切时,以 50 为刻度减
			小此值。

第四节 PMC 调试步骤

4.1 存储卡格式 PMC 的转换

通过存储卡备份的 PMC 梯形图称之为存储卡格式的 PMC (Memory card format file)。 由于其为机器语言格式,不能由计算机的 Ladder 3 直接识别和读取并进行修改和编辑,所 以必须进行格式转换。同样,当在计算机上编辑好的 PMC 程序也不能直接存储到 M-CARD 上,也必须通过格式转换,然后才能装载到 CNC 中。

在使用新系统时,需要转换 PMC 规格,这个步骤需要在计算机格式时完成,完整的流程为:

M-CARD 格式→计算机格式→计算机格式(规格变更)→M-CARD 格式

1. M-CARD 格式(.001等) -----> 计算机格式(.LAD)

1)运行 LADDERIII 软件,在该软件下新建一个类型与备份的 M-CARD 格式的 PMC 程序类型相同的空文件。

FAPT LADDER - III - LEVEL1	×
File(E) Edit(E) View(V) Diagnose(D) Ladder(L) Tool(T) Window(W) Help(H)	
ogram List PLEVEL1	
:\Program Files\PMC\FAF 😋 😪 Resize 🗰 Address & Symbol 🔹	
] Title	· II
System parameter	
Symbol comment	
Ladder	
L LEVEL1	
LEVEL2	
🗅 Sub-program	
Collective Display	
User Folder	
Insert Replace All clear	
··· · · · · · · · ·	
	الح
	- - //

2)选择 FILE 中的 IMPORT (即导入 M-CARD 格式文件),软件会提示导入的源文件 格式,选择 M-CARD 格式即可。

FAPT LADDER - III - LEVEL1			- D ×
File(E) Edit(E) View(V) Diagnos	e(<u>D</u>) Lad	$ler(\underline{L})$ Tool(<u>T</u>) Window(<u>W</u>) $Help(\underline{H})$	
New Program(<u>N</u>) Open Program(O)	Ctrl+N Ctrl+O		
Close Program(⊆)		FNC 1 END1	
Save(<u>5</u>)	Ctrl+S	L1	_
Save As(<u>A</u>)		Resize 🗰 Address & Symbol 🔻	
Import(I)			
Print(<u>P</u>) Preview(<u>V</u>)	Ctrl+P		
1 C:\Program Files\\PMC0002			
<u>2</u> C:\Program Files\\PMC0001 3 C:\Program Files\\PMC0000			
4三门峡(8工位)(sa1)			
? L			
User Folder			
		Insert Replace All clear	
		+ + + + + + +	-
Inport		NEW	PMC-5 //,

执行下一步找到要进行转换的 M-CARD 格式文件,按照软件提示的默认操作一步步执 行即可将 M-CARD 格式的 PMC 程序转换成计算机可直接识别的.LAD 格式文件,这样就可 以在计算机上进行修改和编辑操作了。

2. 计算机格式(.LAD) -----) M-CARD 格式

当把计算机格式(**.LAD**)的 PMC 转换成 **M-CARD** 格式的文件后,可以将其存储到 **M-CARD**上,通过 **M-CARD** 装载到 CNC 中,而不用通过外部通讯工具(例如: RS-232-C 或网线)进行传输。

1) 在 LADDERIII 软件中打开要转换的 PMC 程序。先在 TOOL 中选择 COMPILE 将 该程序进行编译成机器语言,如果没有提示错误,则编译成功,如果提示有错误,要退出修 改后重新编译,然后保存,再选择 FILE 中的 EXPORT。

FAPT LADDER - III - [LEVEL2]		
File(E) Edit(E) View(V) Diagnose(D) Ladder(L)	Tool(T) Window(W) Help(H)	_ 8 ×
	Nemonic Convert(<u>D</u>) Ctrl+D Source Program Convert(<u>G</u>) Ctrl+G	
	Data Conversion 🕨	
🗨 😌 Resize 🎽 Address & Symbol	Compile(<u>C</u>)	
P9091 1 P0250 4	Decompile(R)	B0250 3
	Communication(C) Select Device Load	
R9091.1	Store	R0250.4
LOG1	Clear PMC Memory	O
	Backup	
	Program Run/Stop	<u> </u>
Insert Replace All	Link or language programs	<u> </u>
	Option	
001 + + + +	+ + +	+
		•
	Net: 00001-00002 [116]	Edit Over
Compile	18i	PMC-5 //

注意:如果要在梯形图中加密码,则在编译的选项中点击,再输入两遍密码就可以了。

2) 在选择 EXPORT 后,软件提示选择输出的文件类型,选择 M-CARD 格式。

FAPT LADDER	Import/Export ×	
File(E) Edit(E		B_X
	Select export file type	
<u>►</u> @ <u>+</u> ++	FAPT LADDER III File (*. LAD)	
🗨 🗨 🛛 Resi:	ROM Format File Handy-file Format File	
X0004 2	User File	<u> </u>
MD1.K		
X0004.3		
RMT.K		
Inse		<u></u> ≜
001 +		+
		_
	< 上一步 (B) 下一步 (Q) > 取消 帮助	Over
		PMC-5

确定 M-CARD 格式后,选择下一步指定文件名,按照软件提示的默认操作即可得到转换了格式的 PMC 程序,注意该程序的图标是一个 WINDOWS 图标(即操作系统不能识别的文件格式,只有 FANUC 系统才能识别)。

转换好的 PMC 程序即可通过存储卡直接装载到 CNC 中。

4.2 不同类型的 PMC 文件之间的转换

0I-D/0I Mate-D 系统 PMC 转换举例

在类似机床使用新系统时,用户往往需要将之前的梯图转换成当前系统配套的梯图,刚 开始使用 0i-D/0i Mate-D 系统时往往需要这样的转换,只有 V5.7 以上版本的 LADDERIII 软 件才可以编辑/处理 D 系统对应的梯图。不同系统配套梯图的 PMC 规格是不同的,0i-C/0i Mate-C 与 0i-D/0i Mate-D 的 PMC 规格如下表:

系统类型	PMC规格	PMC容量	I/O Link通道 I/O点数
0 <i>i</i> - C A包	PMC SB7	24,000步 〇 32,000步 ☆(0 <i>i –</i> TTC)	1ch DI/DO 1024 / 1024 ⊖ 2ch DI/DO 2048 / 2048 ☆ (0 <i>i</i> – TTC)
0 <i>i</i> - D A包	0i - D PMC	24,000步 〇 32,000步 ☆	1ch DI/DO 1024 / 1024 ⊖ 2ch DI/DO 2048 / 2048 ☆
0 <i>i</i> - C B包	PMC SA1	5,000步 〇	1ch DI/DO 1024 / 1024 〇
0 <i>i</i> - D B包	0i - D PMC/L	5,000步 〇 8,000步 ☆	1ch DI/DO 1024 / 1024 〇
0 <i>i</i> Mate - C	PMC SA1	5,000步 〇	1ch DI/DO 240 / 160 🔿
0 <i>i</i> Mate - D	0i Mate - D PMC/L	5,000步 〇 8,000步 ☆	1ch DI/DO 256 / 256 〇

转换过程如下:

[1]: [File] \rightarrow [PMC Type changed and save...]

FANUC LADDER - III - Ladder	
<u>F</u> ile <u>E</u> dit <u>V</u> iew <u>D</u> iagnose <u>L</u> adder <u>T</u> ool	<u>W</u> indow <u>H</u> elp
<u>N</u> ew Program Ctrl+N	2 💷
Open Program Ctrl+0	
Croze trogram	
Save Ctrl+S	
Save <u>A</u> s PMC Type changed and save	📮 🗖 🗙 🏪 Program List
Import Export Print Ctrl+P Pregiew 1 2 3 D:\data\bobographic\1 4 L\data\bobographic\a Exit	 C:\Documents and Settings\yangxi\桌面\p\ Title System parameter Symbol comment I/O Module Message Ladder LeVEL1 LEVEL2 Sub-program Collective Display
Addrore: Symbol:	Belevi All
Element: 9 Net: 0000	-00001 [120]
1 Help 2 Down Co 3 Down Se 4 5	6 7 8 9 10 11 12

- 【2】: 在【Name】栏指定转换后的.LAD 程序的路径和名称,
 - 在【PMC Type】栏指定转换后梯图的 PMC 规格,
 - 点【OK】

PIC Type chan	ged and save	×
Program		
Specify New	Program	
Name	C:\Documents and Settin;	Browse
PMC Type	Oi Mate-D PMC/L 💌	Initialize
PMC Fath PMC Memory I/O Link E Extended func C Standard (M C Extended S	01 Mate-D PMC/L 01-D PMC 01-D PMC/L 301-A PMC 301-A PMC (DCS) 311-A PMC (DCS) 311-A PMC (DCS) 321-A PMC (DCS) 321-A PMC (DCS) 321-A PMC (DCS) 321-A PMC (DCS) 321-A PMC (DCS) 321-A PMC (DCS) 321-A PMC (DCS) 921-A P	retails
C Function B	lock(Extended Symbol)	
🗍 Extended I	nstruction	
OK	Cancel	Log File

【3】:经过计算机处理,弹出 FlChange 文档说明转换细节并在指定路径生成.LAD 文件。

🕞 F1Change - 记事本
文件 (E)编辑 (E)格式 (2) 查看 (Y) 帮助 (H)
SYSTEM PARAMETER
Conversion completed Error count = 00000 Warning count = 00000
TITLE ##### Occurrence
CONVERSION COMPLETED ERFOR COUNT = 00000 WARNING COUNT = 00000
346 line K·W-7000. The snare code of the sumbol data was replaced with the
specification character.
347 line K: W-7000: The space code of the symbol data was replaced with the
specification character.
348 line K: W-7000: The space code of the symbol data was replaced with the
specification character.
349 line K: W-7000: The space code of the symbol data was replaced with the
specification character.
350 IINE K: W-7000: The space coue of the symbol uata was replaced with the
351 line K: W-7000: The snace code of the sumbol data was replaced with the
specification character.
491 line K: W-7000: The space code of the symbol data was replaced with the
specification character.
492 line K: W-7000: The space code of the symbol data was replaced with the
specification character.
Conversion completed Error count = 000000 Warning count = 000008
LHVVEK ##### Conversion completed _ Error count = 00000 Warning count = 00000
MFSSACF
K: W-4101: Data not found.
Conversion completed Error count = 00000 Warning count = 00001
I/O MODULE

【4】: 打开生成的.LAD 文件,进行一定编辑后按上述方法生成卡格式文件拷入系统即 可使用。

4.3 I/O 模块的设置

BEIJING-FANUC 0i-D/0i Mate-D 系统和 0i-C/0i Mate-C 系统相同,由于 I/O 点、手轮脉冲信号都连在 I/O LINK 总线上,在 PMC 梯形图编辑之前都要进行 I/O 模块的设置(地址分配),同时也要考虑到手轮的连接位置。

0i-D 可选择的 I/O 模块有很多种,但是分配原则都是一样的。下面就几种典型的 I/O 模块如 0i 用 I/O 单元 A 和机床面板的分配进行说明。

说明: 0i用 I/O 单元 A 为一 96 个输入点、64 个输出点的 I/O 模块。其上并带有手轮接口。对于此手轮接口的是否使用涉及到分配模块大小的问题,在下面的具体分配时说明。

a)0i-D 仅用如下 I/O 单元 A,不再连接其它模块时

可设置如下: X从 X0 开始 用键盘输入: 0.0.1.OC02I Y从 Y0 开始 用键盘输入: 0.0.1./8

ADDRESS	CROUP	BHOF	51.00	NOME	ADDRESS	GROUP	BASE	SLOT	NAME
X000 [0	0	1	00021	Y000	0	0	1	/8
X901	Ø	Ø	1	00021	T001	Ø	Ø	1	/8
X002	8	8	1	UCØ21	Y002	0	0	1	/8
X003	Ø	Ø	1	00021	Y003	Ø	Ø	1	∕8
X004	Ø	0	1	00021	Y004	0	0	1	∕8
X005	0	0	1	00021	Y005	0	0	1	∕8
X006	0	0	1	00021	Y006	0	0	1	∕8
X007	Ø	Ø	1	00021	Y007	0	Ø	1	∕8
X008	0	0	1	00021	Y008				
X009	0	0	1	00021	Y009				
X010	0	0	1	00021	Y010				
X011	0	0	1	00021	Y011				
X012	U	4	1	00021	Y012				
X013	6	U 0	1	00021	YØ13				
X014	U	ы	1	00021	1014				
GROUP. BAS	E. SLOT	. NAME	=						
	1214	5							
0.0.1.000	121								
	1	T	-	-		<u> </u>			

说明:
系统侧 I/O 模块的分配如
图所示:从 X0 开始进行分
配,键入 0.0.1.OC02I。
手轮连接到系统的专用 I/0
单元的 JA3 上,手轮信号
从 x12x14 引入系统。 可
以通过边旋转手轮边观察
PMC 的 X12-14 状态是否
变化来确认手轮是否起作
用。同理Y从Y0开始分
配,键入 0.0.1.OC02O 或
0.0.1./8 .

注 1: 此种设置为上面所示连接的设置,当用其他模块时,要根据其规格适当的更改。

b)使用标准机床面板时

除了机床的面板,一般机床侧还有 0i 用 I/O 单元 A 或其他 I/O 板以及手轮。手轮可接在 I/O LINK 总线上任一 I/O 模块上的 JA3 上,但是在模块分配上要注意连接手轮的模块分配字节的大小。

若使电柜中 I/O 单元 I/O 点的 X 地址从 X0 开始,因为其连接是使用了第二个 JD1A (见 上图),属于第一组 I/O,故键入: 1.0.1.OC01I,Y从 Y0 开始,键入: 1.0.1./8。 机床操作面板 I/O 点的 X 地址从 X20 开始,因为其连接是使用了第一个 JD1A(见上图), 属于第 0 组 I/O,故键入: 0.0.1. OC02I (OC02I 对应手轮),Y 点从 Y24 开始,键入: 0.0.1./8。

PMC I∕O M	ODULE	CHANN	EL 1	PMC STOP	
ADDRESS	GROUP	BASE	SLOT	NAME	
X020	0	Ø	1	OC021	说明.
X021	0	0	1	00021	
X022	0	0	1	00021	在系统侧I/O模块的分
X023 X024	0	0	1	00021	配加图所示.
X024 X025	a	õ	1	00021	
X026	ő	õ	1	00021	操作面板输入地址
X027	Ø	Ø	1	OC021	从 X20 开始进行分配
X028	0	0	1	OCØ21	从 私20 开始近11 万能
X029	Ø	Ø	1	OC021	0.8.1.OC02I ; 输出地址 Y
GROUP. BA	SE. SLOT.	NAME	=		从 Y20 开 始
0. 0. 1. OC	021^				
	CELDOU	DELEG	E DDV		等。
INPUT	SEARCH	DELET	E PRV.	CH NXT. CH	Oi 田 I/O 单元 A 输
	ODULE	CHANN	FI 1	DMC STOD	人地址从 X0 开始进行分
ADDRESS	GROUP	BASE	SLOT	NAME	〒 1010C011, 输出地
×000					
	1	0	1	OCØ1I	
X001	1	0 0	1 1	0CØ1I 0CØ1I	业 Y 从 Y0 开始
X001 X002	1 1 1	0 0 0	1 1 1	OCØ1I OCØ1I OCØ1I	址 Y 从 Y0 开始
X001 X002 X003	1 1 1 1	0 0 0	1 1 1 1	0C011 0C011 0C011 0C011	址 Y 从 Y0 开始 1.0.1.OC010 或 1.0.1./8
X001 X002 X003 X004	1 1 1 1 1	0 0 0 0	1 1 1 1	0C011 0C011 0C011 0C011 0C011	 ↓ Y 从 Y0 开 始 1.0.1.OC010 或 1.0.1./8 等。此种分配手轮连接
X001 X002 X003 X004 X005 X005	1 1 1 1 1	0 0 0 0 0	1 1 1 1 1 1	0C011 0C011 0C011 0C011 0C011 0C011	 ↓ Y 从 Y0 开 始 1.0.1.OC010 或 1.0.1./8 等。此种分配手轮连接 在操作面板上(注 1)
X001 X002 X003 X004 X005 X006 X007	1 1 1 1 1 1 1	0 0 0 0 0 0	1 1 1 1 1 1 1	0C011 0C011 0C011 0C011 0C011 0C011 0C011	 サ Y 从 Y0 开始 1.0.1.OC010 或 1.0.1./8 等。此种分配手轮连接 在操作面板上(注1)。
x001 x002 x003 x004 x005 x006 x006 x007 x008	1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0	1 1 1 1 1 1 1 1	0C011 0C011 0C011 0C011 0C011 0C011 0C011 0C011	 1.0.1.OC010 或 1.0.1./8 等。此种分配手轮连接 在操作面板上(注1)。 当然也可以把手轮
X001 X002 X003 X004 X005 X006 X006 X007 X008 X009	1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1	OC011 OC011 OC011 OC011 OC011 OC011 OC011 OC011 OC011 OC011	 1,0.1.OC010 或 1.0.1./8 ÷ 此种分配手轮连接 在操作面板上(注1)。 当然也可以把手轮 连接到 0; 田 1/0 单元 4
X001 X002 X003 X004 X005 X006 X007 X008 X009 GROUP. BA	1 1 1 1 1 1 1 1 1 5E. SLOT.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1	OC011 OC011 OC011 OC011 OC011 OC011 OC011 OC011 OC011 OC011	 Y 从 Y0 开始 1.0.1.OC010 或 1.0.1./8 等。此种分配手轮连接 在操作面板上(注1)。 当然也可以把手轮 连接到 0i 用 I/O 单元 A
X001 X002 X003 X004 X005 X006 X007 X008 X009 GROUP. BA	1 1 1 1 1 1 1 1 1 5E. SLOT.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1	OC011 OC011 OC011 OC011 OC011 OC011 OC011 OC011 OC011 OC011	 Y 从 Y0 开始 1.0.1.OC010 或 1.0.1./8 等。此种分配手轮连接 在操作面板上(注1)。 当然也可以把手轮 连接到 0i 用 I/O 单元 A 上,但此时只要把模块分
x001 X002 X003 X004 X005 X006 X007 X008 X009 GROUP. BA	1 1 1 1 1 1 1 1 5E. SLOT.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1	OC011 OC011 OC011 OC011 OC011 OC011 OC011 OC011 OC011 OC011	 Y 从 Y0 开始 1.0.1.OC010 或 1.0.1./8 等。此种分配手轮连接 在操作面板上(注1)。 当然也可以把手轮 连接到 0i 用 I/O 单元 A 上,但此时只要把模块分 配时模块的名字改变一
X001 X002 X003 X004 X005 X006 X007 X008 X009 GROUP. BA	1 1 1 1 1 1 1 1 1 5 5 5 5 1 7	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		OC011 OC011 OC011 OC011 OC011 OC011 OC011 OC011 OC011 OC011	 Y 从 Y0 开始 1.0.1.OC010 或 1.0.1./8 等。此种分配手轮连接 在操作面板上(注1)。 当然也可以把手轮 连接到 0i 用 I/O 单元 A 上,但此时只要把模块分 配时模块的名字改变一 下即可,详情请看 I/O

注1: 标准机床操作面板实际上也是一96/64 个输入/输出点的 I/O 模块,其背面带有两个可连接手轮的接口,分别为 JA3 和 JA58。不同之处是: JA3 为一可同时连接三个手轮的手轮接口,如下图注 1-1 所示。而 JA58 是仅有一个手轮接入信号,其余的信号用于通用的 I/O 点,如下图注 1-2 所示。通常使用悬挂式手轮时,手轮接于此口。

注 1—1

c)对 I/O Link 轴的分配

1) I/O Link 轴的连接如下图所示:

说明**:**

FANUC 的具有 I/O LINK 接口的βi系列伺服单元可以看成是 FANUC I/O 模块的一种。 它同样是通过 I/O LINK 总线与系统连接,当连接这种单元时也需要对其进行像 I/O 模块一 样的地址分配。这种 I/O LINK βi系列伺服单元(包括β系列伺服单元)占用输入/输出各 128 个(即 16 字节)点。在使用此种单元时需给其分配各 16 字节的输入/输出空间。由于 输入/输出点数的影响,0i-B/C 的 A 包 1024 点输入/1024 点输出中,最多可使用 7 个具有 I/O LINK 接口的βi系列伺服单元。

2) I/O Link 轴的地址分配

每个 I/O LINK 轴占用各 128 个输入/输出点(即 16 个字节大小),在进行地址分配时符 合对 I/O 模块分配的原则,在前面的基础上继续进行设置。

I/O Link 轴的地址规定如此下:

X 输入点从 X40 开始,	键入:	2.0.1.OC02I	此时 x=40
Y 输出点从 Y40 开始,	键入: 2.	0.1.0C020	此时 y=40

说明:

①上述分配是按照所示的连接示意图所进行的一种分配, I/O LINK 放大 器位于第二组 I/O 上。起始地址要与之前的分配不冲突,不重合即可。

②总之不管设定时使用的模块名字是什么,只要最终结果输入点有 16 个

注意:

I/O Link 轴放大器上有手轮接口, 但该接口的接口信号与通用的手轮接口信号不 同。连接在该处的手轮仅用于操作该 I/O LINK 轴,不能用于操作基本轴 (CNC 控 制轴)。两者各用各自的手轮。0i-C 以后,用于控制基本轴的手轮可用于控制 I/O LINK 轴,,此时可只用一个手轮,但需要特殊订货,此为选择功能。

综述:

FANUC I/O LINK 总线的连接示意图如下:

说明:

1) 点数 FANUC 的 I/O LINK 总线由于系统的不同,点数也不同。对于 0i-D 系列,其 I/O 点数为 1024 点输入/1024 点输出。而对于 0i MATE-D 系列为 256 点输入/256 点输出。 对于 16i/18i, I/O LINK 总线为双通道, 每通道 1024/1024 点输入/输出, 总共可达到

2048/2048 点输入/输出。对于每个通道的模块分配,总共可分配 16 组,每组可达到 256 点。

- 2) GBS(物理地址即硬件连接)在进行模块分配的时候,首先要注意的是各 I/O 模块的物理连接(即实际的硬件连接):GROUP(组号)、BASE(基座号)、SLOT(插槽号)。一般来说,从系统的 I/O LINK 接口出来默认的组号为第0组,一个 JD1A 连接1组。从第0组开始,组号顺序排列。基座号是在同一组内的分配,基座号从0开始。插槽号为同一基座内的分配,插槽号从1开始。如上图所示:一旦系统的 I/O 模块硬件连接固定,其分配时的 GBS 也就固定好了。在 PMC 中进行模块分配,其实就是要把硬件连接和软件上设定的地址统一(即物理点与软件点对应)。
- 3)模块分配(软件地址) 系统的 I/O 模块的分配很自由,但有一个规则 即:连接手轮的 模块必须为 16 个字节(在不进行特殊设置的情况下,注1),且手轮连在离系统最近的 一个16字节(OC02I)大小的I/O模块的JA3接口上。对于此16字节模块,Xm+0→Xm+11 用于输入点,即使实际上没有那么多输入点,但为了连接手轮也需如此分配。 Xm+12→Xm+14 用于三个手轮的输入信号。

只连接一个手轮时(第一手轮),旋转手轮时可看到 Xm+12 中信号在变化。Xm+15 用 于输出信号的报警。m 为在模块分配时候的起始地址,一旦分配的起始地址(m)定义 好以后,则模块内的点地址也相对有了固定地址。如下图所示为 0i 用 I/O 单元 A 的硬 件点地址分布,按照前面的连接,它是连在第 2 个(第 1 组)从 x0 开始分配,则此时 m=0,则此点的地址为 X0.0。

4) **模块名称(分配的字节大小)** OC02I 为模块的名字,表示该模块的大小为 16 个字节输入。

OC02O为模块的名字,表示该模块的大小为16个字节输出。 OC01I为模块的名字,表示该模块的大小为12个字节输入。 OC01O为模块的名字,表示该模块的大小为8个字节输出。 不用模块名称,也可用下面的"/"和"数值"输入: /6表示该模块有6个字节。 /8表示该模块有8个字节。

- 5) 定义有效范围 原则上 I/O 模块的地址可以在规定范围内(即系统所容许的点数范围内) 任意处定义,但是为了机床的梯形图的统一和便于管理,最好按照以上推荐的标准定义。 注意:一旦定义了起始地址(m)该模块的内部地址就分配完毕。
- 6)连接(电缆/光缆)电缆长度大于 15m 时,通常要求使用光缆进行连接。连接情况如下 图(注 2-1)所示。但是对于连接光缆适配器两侧的 I/O LINK 电缆,则要注意其内部接 线较标准的 I/O LINK 电缆有所区别。用于连接光缆适配器的 I/O LINK 电缆其内部含有 5V

电源线,如下图(注 2-2)所示。如连接电缆不正确,PMC则会出现 ER97 IO LINK FAILURE

报警。

图 注 2—2

7) 保存/上电顺序 在模块地址分配完毕以后,要注意保存到 F-ROM,然后使机床断电再 上电,分配的地址才能生效。同时要注意使模块优先于系统上电,否则系统在上电时无 法检测到该模块。

注1:

在实际的连接过程中,有可能分配多个 16 字节大小的模块,如前述同时连接了标准机床操作 面板和 0i 用 I/O 单元 A,两个模块均分配了 16 字节。如果按照上面的分配原则,手轮应连接于 操作面板,如果连接到 0i 用 I/O 单元 A 上,不进行地址的修改手轮就不能正常使用。此时可不 进行新的模块分配,用设置参数的方法即可解决。

参数: 7105#1 设定为1 按设在参数 12300---12302 中的 X 信号地址分配。

12300---12302 三个手轮的脉冲输入地址(可摇动手轮观察 X 信号的变化地址)

虽然可以通过参数设定的方法解决,但由于此参数容易忽略,故请按照上述分配原则进行分配。

4.4 PMC 各个地址说明

4.4.1 信号表

X	机床给 PMC 的输入信号(MT→PMC)	X0~X127	X0~X127 X200~X327(注 1) X1000~X1127(注 1)
Y	PMC 输出给机床的信号(PMC→MT)	Y0~Y127	Y0~Y127 Y200~Y327(注 1) Y1000~Y1127(注 1)
F	NC 给 PMC 的输入信号(NC→PMC)	F0~F255	F0~F767(注 2) F1000~F1767(注 3) F2000~F2767(注 3) F3000~F3767(注 3)
G	PMC 输出给 NC 的信号(PMC→NC)	G0~G255	G0~G767(注 2) G1000~G1767(注 3) G2000~G2767(注 3) G3000~G3767(注 3)
R	内部继电器	R0~R999 R9000~R9099	R0~R7999 R9000~R9499(注 4)
Е	外部继电器	-	E0~E7999(注5)
	信息显示请求信号	A0~A24	A0~A249
А	信息显示状态信号	-	A9000~A9249 (注6)
С	计数器	C0~C79	C0~C399 C5000~C5199(注7)
к	保持继电器	K0~K19	K0~K99 K900~K919(注8)
т	可变定时器	T0~T79	T0~T499 T9000~T9499 (注9)

注:1 PMC预留,不能分配该区域,不能用于 PMC 程序。
2 PMC预留,实际可用地址取决于 CNC 规格。
3 PMC预留,不能用于 PMC 程序。
4 PMC 系统程序管理的特殊区域,慎用(可以调用,见下面说明)。
5 一般不要使用。
6 信息显示状态信号,与信息显示请求信号对应,不能写人。
7 用于固定计数器(CTRB),定义为一个常数。
8 PMC 系统程序管理的特殊区域,慎用。
9 PMC预留,不能用于 PMC 程序。

4.4.2 系统用内部继电器

 R9000(功能指令 ADD, SUB, MULB, DIVB, COMPB 的运 算输出寄存器)

(2) R9000(功能指令 EXIN, WINDR, WINDW, MMCWR, MMCWW 的报警输出)

(3) R9002~R9005(功能指令 DIVB 的运算输出寄存器)输出执行 功能指令 DIVB 结果的余数

对于 R9091.0 (常为 0) 和 R9091.1 (常为 1) 在功能指令的条件选择上会经常用到。

4.4.3 编辑梯形图说明

1) 编辑画面

梯形图编辑画面,可以通过编辑梯形图修改程序(编辑之前要在 PMC SETTING 画面设 定编辑许可)。在梯形图监控画面下按下 [EDIT] 软键可以进入梯形图编辑画面。在梯形 图编辑画面,可以进行以下的操作。

PMC LADDER DIAGRA	AM EDITO	2			PMC RUN
L003B-0304-U500#/	406C	1 CLODO			5_6770 NE
M0149. 1	X0064.0	R0015.7	R0015.4	R0014.7	PROG OF TOOL A
TOOL RETURN CYC Le R0016.3	RUNNING	COMPLETION OF T OOL RETURN EXEC	tool return c ⁴ Le	YC	RN
CONFIRMATION OF TOOL RET. PROG M0150.0	X0064. 0	R0015. 7			
TOOL RETURN CYC Le M0133.0	RUNNING MØ149.1	COMPLETION OF T OOL RETURN EXEC R0015.6	R0015.	. 5	
CNC START	TOOL RET LE R0016.1	FURN CYC TOOL RE	IL FURN CYC TOOL I DISPLAY) LE(FOI	RETURN CYC R DISPLAY)	->A1>
5 NET:M0149.1:DR	50-3	CTOOL RET	JRN CYCLE	2	
LIST SEAR	CH CREAT	E MODIFY UPDATE	SELECT DELETE	сит со	OPY PASTE

在梯形图编辑画面

- 删除网格	[DELETE]
- 剪切与贴补网格	[CUT] 和 [PASTE]
- 复制网格	[COPY] 和 [PASTE]
- 修改触点和线圈的地址	"位地址"+INPUT 键
- 修改功能指令的参数	"数值"或 "字节地址"+ INPUT 键
- 添加新网格	[CREATE]
- 修改网格结构	[MODIFY]
- 使所作修改生效	[UPDATE]
- 放弃修改	[RESTORE]

注

1.无论梯形图程序处在运行还是停止状态,都可以对梯形图进行编辑。然而,如果准备运行修改 过的梯形图,就必须先更新梯形图,更新的方法是退出梯形图编辑画面或按下 [UPDATE] 软 键。

2.如果编辑后的程序在写入 flash ROM 前系统断电,那么修改无效。

利用输入/输出画面将顺序程序写入 flash ROM。当 K902#0 被设为1时,在结束编辑后,会显示一条确认信息,询问是否将顺序程序写入 flash ROM。

2) 画面构成

标题信息(备注)			E L	显示子程序	显示位置信息
PMC LADDE	GRAM EDITO	R			Ph A
1002B-0281 M0149.1 TOOL RETOR LE R0016.3 CONFIRMATI TOOL RET. M0150.0	H580#406G X0064.0 CYC RUNNING 光标 ON OF PROG X0064.0	R0015.7 COMPLET J DOL RETU) global	R0015.4 TOOL RETURN CYC LE	5-6-78 NET R0014.7 PROG OF TOOL A ND R-POS. RETUR RN 显示位置
TOOL RETUR LE M0133.0 CNC START R0015.5	2N CYC RUNNING M0149.1 TOOL RE LE R0016.1	COMPLETI OOL RETU	ION OF T JRN EXEC R0015.6 JF TOOL RET LECFOR D	梯形 R0015.5	图程序显示区域 A1> TURN CYC DISPLAY >
「 「 信息」	SEARC PEAT 显示栏	E MODIFY 键输入	UPDATE 栏	SEL ETE	CUT COPY PASTE

梯形图编辑画面

(a) 画面构成

基本与梯形图监控画面相同,只是不监控显示功能指令参数和继电器。

- (b) 梯形图显示
 - (1).显示格式基本与梯形图监控画面相同,只是功能指令总是以没有监测显示的 "紧凑"格式显示。
 - (2). 始终显示光标。对作为下述操作对象的网格, 画面上将对其着重(高亮度)显示。
- 3) 画面操作
 - (a) 软键操作
 - [LIST] 软键 切换至程序列表编辑画面 切换至程序列表编辑画面。在程序列表编辑画面内,可以切换在梯形图编辑画面内显 示的子程序。
 - 2. [SEARCH] 软键 **搜索并切换菜单** 切换至搜索软键。按下[<]软键可以返回主软键。搜索软键与梯形图监控画面中的该键 完全相同。
 - [MODIFY] 软键 切换至网格编辑画面 切换至网格编辑画面,修改所选网格的结构。
 - 4. [CREATE] 软键 **创建新网格**
在光标位置创建新网格。按下该软键出现网格编辑画面,从而创建出新网格。.

5. [UPDATE] 软键 使修改生效

将当前编辑的梯形图更新为运行的梯形图,所以所有的修改都生效,同时仍保持在编 辑画面。如果更新成功,那么梯形图会开始运行。

警告

修改运行的梯形图程序时必须特别小心,如果错误的修改了梯形图或者当机床处于某种 不当的状态时更新了梯形图,机床将可能会产生不可预料的后果。所以请务必确保在 更新梯形图时,"正确的修改了梯形图"、"机床处于正确的状态"和"机床附近没有人"。

6. [SELECT] 软键 选择多个网格

对以下操作例如 [DELETE], [CUT], [COPY]选择多个网格。按下 [SELECT] 软键为 随后的编辑操作选择一个或多个网格的模式,利用光标移动键和搜索功能选择目标网格。 在该模式下,选择的网格以凹进的 [SELECT] 软键标示,所选网格的信息在靠 近屏幕底部的附加信息栏里显示。

7. [DELETE] 软键 删除网格

删除所选网格。用[DELETE]软键删除的网格将消失。如果用 [DELETE]软键删除了 错误的网格,那么就必须放弃所有的更改,将梯形图程序恢复到没有编辑前的最初状态。

8. [CUT] 软键 剪切网格

剪切所选网格。剪切下的网格从程序中消失,但是被保存在粘贴缓冲区中。粘贴缓冲区中[CUT]操作前的内容被清除。 [CUT] 和 [PASTE] 软键用来移动网格。

9. [COPY] 软键 复制网格

将所选网格复制到缓冲区中。程序没有任何改变。粘贴缓冲区中[COPY] 操作前的内容被清除。 [COPY] 和 [PASTE] 软键用来复制网格。

10. [PASTE] 软键 粘贴网格

在光标位置粘贴被保存在粘贴缓冲区中的由[CUT]或[COPY]操作的网格。在用 [SELECT]软键选择的网格处按下[PASTE]软键将所选网格替换为粘贴缓冲区中的网 格。粘贴缓冲区中的内容在 CNC 断电之前一直保留。

11. [RESTORE] 软键 放弃所作修改

放弃所有更改,将梯形图程序恢复到刚进入梯形图编辑画面时的状态或者是最后一次用 [UPDATE]软键更新的状态。 当做了错误的修改并且很难纠正该错误时该软键非常有用。

12. [SETING] 软键 进行画面设定

在梯形图编辑画面内进入设置画面。在该画面内可以对梯形图编辑画面的设置进行修改。利用[<]软键返回梯形图编辑画面。

13. [RUN]/[STOP] 软键 运行和停止梯形图程序

控制梯形图程序的执行。 [RUN] 软键用来使梯形图程序运行, [STOP] 软键用来停止梯形图程序。这两个软键均需要得到操作者的确认,当操作者确认要运行或停止梯形图程序时,按下 [YES] 即可。

警告

运行/停止梯形图程序时必须特别小心,如果在错误的时间或者当机床处于某种不当的状态 时运行/停止了梯形图,机床将可能会产生不可预料的后果。当梯形图程序处于停止状态 时,安全机构和梯形图程序的监测都没有运行。所以请务必确保在运行/停止梯形图时,"机

床处于正确的状态"和"没有任何人靠近机床"。

14. [<] 软键 退出编辑状态

退出编辑画面,同时将编辑的梯形图程序更新为运行程序,所有修改都可以生效。当 梯形图编辑画面处于有效状态并且类似<SYS>的功能键不起作用时,编辑数据被删除。

警告

修改运行的梯形图程序时必须特别小心,如果错误的修改了梯形图或者当机床处于某种不当的状态时更新了梯形图,机床将可能会产生不可预料的后果。所以请务必确保在更新梯形 图时,"正确的修改了梯形图"、"机床处于正确的状态"和"没有任何人靠近机床"。

- (b) 其它键的操作
 - 光标移动键、翻页键
 可以通过光标移动键和翻页键在屏幕上移动光标。当光标位于某继电器或某功能指
 令的地址参数上时,光标处地址的信息在 "附加信息栏"处显示。
- 2. "位地址"+ENTER 键 更改光标处继电器的位地址。
- "数值"或"字节地址"+ENTER 键 更改光标处的功能指令参数。但是,有些参数是不能通过该操作更改的。如果发现 有该参数不能更改的信息提示,请使用网格编辑画面更改参数。
- (c) 快捷操作
 - 可以使用与梯形图监控画面相同的搜索快捷操作,详细内容请参考梯形图监控画面 快捷操作的描述。
 - 2. 可以使用与梯形图监控画面相同的[LIST]软键快捷操作。

4.5 操作变更

0I-C/0I Mate-C 系统的 PMC 操作菜单树形图为:

0I-D/0I Mate-D 系统的 PMC 操作菜单树形图为:

a. 梯图显示设定(设定显示中地址/符号,是否显示线圈注释等选项)

0I-C/Mate C:【PMCLAD】→【设定】;

0I-D/Mate D:【PMCLAD】→【操作】→【设定】

b. 0I-D/Mate D 系统减少的菜单:【CROSS】交叉检索;

c. 0I-D/Mate D 系统增加的菜单:【IO 诊断】吸收了【CROSS】的部分功能(对地址信息的检索);

【PMCST】PMC 状态:显示 PMC 当前状态

【双线圈】: 双线圈菜单是用来方便地检查梯图编写中出现的重复地址错误。这种错误 如果是因为整个程序段复制了一遍则影响不大,否则可能会导致该信号输出不定,产生 不期望的逻辑错误。如下图中的信号 R21.0:

PMC 梯图				执行	***
		2	三圈检查		
地址	网号				
R0021.0	<mark>00039</mark>	00044			
R0021 0 :		6		2	
			A>^		
			MDI **** ***	* 15:44:48	
< 列表	梯形	图 汉	民圈	(操作)	

PMC 梯图		<mark>执行 </mark> ***
	PMC梯形图显示	
[BJ-BAZHEN	1全部	43-44/243NET
>A2>	60010 = -10001	
R9091, 1	RST R9821.0	
Jr	SUB 27 1	
R9091.1	ACT 60030 = 120	
43NET		<u>.</u>
	A>^	
	MDI **** ***	15:49:03
		读取 +

d. 两个显示设定画面,如菜单结构图中所示。

在【梯形图】的【操作】子菜单里的是设定 1,为梯形图显示设定;另一个在【操作】 子菜单【编辑】的子菜单里的是设定 2,为梯形图编辑设定。很相似,但有区别。

PMC 梯图		<mark>执行 </mark> ***
	PMC梯形图显示	
EPAN IXAAAB 4	1全部	1-2/206NET
		•
X0004.1	60053.3	3
		7
	PMC 梯形图显示(设定)	
地址注释	= <mark>符号</mark> / 地址	
功能命令的显示形式	■■■ = <mark>压缩 </mark> / 宽度 / 纵长	
显示触点注释	= <mark>无 / 1</mark> 行 / 2行	
节点幅度	= <mark>标准</mark> / 宽度	
显示线圈注释	= 是/不	
显示光标	= 是 / 不	
子程序网格号	= 局部 / <mark>全部</mark>	
反向搜索许可	= 是 / 不	
	A>^	
	MDI **** *** **	* 16:05:57
<		2 退出

PMC 梯图		<mark>执行</mark> ***
LJUST FOR DEMO R9091.1 R0250.4	PMC 梯形图编辑]全部 R0250.3	3-4/129NET
R9091.1	R0250. 4	
	PMC 梯形图编辑设定	
地址汪释 显示触点注释 节点幅度 显示线圈注释 子程序网格号 反向搜索许可 编辑后后置处理 缩放模式	= 符号 / 地址 = 元 / 1行 / 2行 = 标准 / 宽度 = 是 / 不 = 局部 / 全部 = 是 / 不 = 是 / 不 = 是 / 不 = 1 M / 复数网	
	A>^	
	MDI **** *** 1	1:11:12
	初始化	退出

第五节 刚性攻丝

5.1 概要

在刚性攻丝时,主轴旋转一转所对应钻孔轴的进给量必须和攻丝的螺距相等,即必须满足如下的条件:

P= F/S

- P: 攻丝的螺距 (mm)
- F: 攻丝轴的进给量 (mm/min)
- S: 主轴的速度 (rpm)

在普通的攻丝循环时G84/G74 (M系列), G84/G88 (T系列), 主轴的旋转和钻孔轴(Z 轴)的进给量是分别控制的, 主轴和进给轴的加/减速也是独立处理的, 所以不能够严 格地满足以上的条件, 特别是攻丝到达孔的底部时, 主轴和进给轴减速到停止, 之后又 加速反向旋转过程时, 满足以上的条件将更加困难。所以, 一般情况下, 攻丝是通过在 刀套内安装柔性弹簧补偿进给轴的进给来改善攻丝的精度的。而刚性攻丝循环时, 主轴 的旋转和进给轴的进给之间总是保持同步。也就是说, 在刚性攻丝时, 主轴的旋转不仅 要实现速度控制, 而且要实行位置的控制。主轴的旋转和攻丝轴的进给要实现直线插补, 在孔底加工时的加/减速仍要满足P=F/S的条件以提高刚性攻丝的精度。

刚性攻丝可以通过以下的任何一种指令完成:

- (1) _ M29 S _____ 刚性攻丝指令在G74/G84 (M series) 或 G84/G88 (T series)之前指定
- (2) _ M29 S ____ 刚性攻丝指令与攻丝指令G74/G84(M series) 或 G84/G88 (T series)在同一程序段
- (3) _ G74/G84 (M series) 或 G84/G88 (T series) 作为刚性攻丝指令(使用G74/G84 (G84/G88)作为刚性攻丝指令,还是作为普通的攻丝指令可通过参数5200#0指定)
- 其中,对于M系列:

G84X_Y_Z_R_P_F_K_; 为标准攻丝循环指令

G74X_Y_Z_R_P_F_K_; 为反螺纹攻丝循环指令

对于T系列:

G84为端面刚性攻丝循环(沿Z轴),G88为侧面刚性攻丝循环(沿X轴);

刚性攻丝中可以指定每分钟进给和每转进给指令,每分钟进给方式下,F/S 为攻 丝的螺距,而每转进给方式下,F为攻丝螺距。

5.2 系统的配置

刚性攻丝功能一般是使用FANUC的串行主轴控制实现的,由于机床结构不同以及 检测精度的不同,反馈系统的配置也不尽相同,依据配置的不同,分为如下几种结构: 1)当使用α编码器时

与此配置相关的设定参数:

参数	设定值	内容
4000 #0	根据配置而定	主轴与电机的旋转方向
4001 #4	根据配置而定	主轴传感器的安装方向
4002 #3,2,1,0	0,0,1,0	在主轴传感器上使用 α 位置编码器
4003 #7,6,5,4	0,0,0,0	主轴传感器的轮齿的设定
4010 #2,1,0	根据检测器而定	电机传感器种类的设定
4011 #2,1,0	根据检测器而定	电机传感器的轮齿的设定
4056~4059	根据配置而定	主轴与电机之间的齿轮比

2) 当使用α编码器s时

与此配置相关的设定参数

参数	设定值	内容
4000 #0	根据配置而定	主轴与电机的旋转方向
4001 #4	根据配置而定	主轴传感器的安装方向
4002 #3,2,1,0	0,1,0,0	在主轴传感器上使用 as 位置编码器
4003 #7,6,5,4	0,0,0,0	主轴传感器的轮齿的设定
4010 #2,1,0	根据检测器而定	电机传感器种类的设定
4011 #2,1,0	根据检测器而定	电机传感器的轮齿的设定
4056~4059	根据配置而定	主轴与电机之间的齿轮比

3) 当使用 Mzi、Bzi、或 Czi 时

[系统配置例 2]

与此配置相关的设定参数

参数	设定值	内容
4000 #0	0	主轴与电机的旋转方向
4002 #3,2,1,0	0,0,0,1	将电机传感器使用于位置反馈
4010 #2,1,0	0,0,1	在电机传感器中使用 MZi 传感器、BZi 传感器、
		CZi 传感器
4011 #2,1,0	根据检测器而定	电机传感器的轮齿的设定
4056~4059	100 or 1000	主轴与电机之间的齿轮比为 1:1

4) 当使用分离式 Mzi、Bzi、或 Czi 时

与此配置相关的设定参数

参数	设定值	内容
4000 #0	根据配置而定	主轴与电机的旋转方向
4001 #4	根据配置而定	主轴传感器的安装方向
4002 #3,2,1,0	0,0,1,1	在主轴传感器上使用 BZ <i>i</i> 传感器、CZ <i>i</i> 传感器器
4003 #7,6,5,4	根据检测器而定	主轴传感器的轮齿的设定
4010 #2,1,0	根据检测器而定	电机传感器的种类的设定
4011 #2,1,0	根据检测器而定	电机传感器的轮齿的设定
4056~4059	根据配置而定	主轴与电机之间的齿轮比

5) 当使用外部一转信号时

与此配置相关的设定参数

参数	设定值	内容		
4000 #0	根据配置而定	主轴与电机的旋转方向		
4002 #3,2,1,0	0,0,0,1	将电机传感器使用于位置反馈		
4004 #2	1	外部一次旋转信号		
4004 #3	根据检测器而定	外部一次旋转信号的类型的设定		
4010 #2,1,0 根据检测器而定		电机传感器的种类的设定		
4011 #2,1,0	根据检测器而定	电机传感器的轮齿的设定		
4056~4059 根据配置而定		电机传感器的种类的设定 电机传感器的轮齿的设定 主轴与电机之间的齿轮比		
4171~4174 根据配置而定		电机传感器与主轴之间的任意齿轮比		

6) 设置有主轴传感器的轴和主轴不同时

与此配置相关的设定参数

参数	设定值	内容
4000 #0	根据配置而定	主轴与电机的旋转方向
4001 #4	根据配置而定	主轴传感器的安装方向
4002 #3,2,1,0	根据配置而定	主轴传感器的种类
4003 #7,6,5,4	根据检测器而定	主轴传感器的轮齿的设定
4010 #2,1,0	0,0,0	在电机传感器上使用 Mi 传感器
4011 #2,1,0	根据检测器而定	电机传感器的轮齿的设定
4007#6	1	不检测与位置反馈信号相关的报警(非 Cs 轮廓 控制方式)
4016#5	0	不检测与位置反馈信号相关的报警(Cs 轮廓控 制方式)
4056~4059	根据配置而定	主轴与电机之间的齿轮比
4500~4503	根据配置而定	主轴传感器与主轴之间的任意齿轮比

- 注:1) 主轴电机和主轴传感器主要有以下几种:
 - (i) 电机传感器 : 连接于连接器 JYA2 的检测器
 (Mi 传感器、MZi 传感器、内装式电机的 BZi 传感器、内装式电机 的 CZi 传感器)
 - (ii) 主轴传感器 : 连接于连接器 JYA3 或 JYA4 的检测器
 (a 位置编码器、 a 位置编码器 S、分离式 BZi 传感器、分离式 CZi 传感器等)

其中αi、βi 电机内部传感器分为两种: Mi 和 Mzi (根据电机标牌: A06B-xxxx-B100 为 Mi, A06B-xxxx-B103 为 Mzi)。内装主轴电机有 Bzi 和 Czi 两种传感器。按照下表设定参数。

参数 MSTYP2~MSTYP0 设置电机传感器的种类,即设定内置在电机中的检测器(连接于连接器 JYA2 上的检测器)的种类。

MSTYP2	MSTYP1	MSTYP0	电机传感器的种类
0	0	0	Mi 传感器
0	0	1	MZi、BZi、CZi 传感器

根据主轴传感器的使用情况,按照下表设定参数

	#7	#6	#5	#4	#3	#2	#1	#0
4002					SSTYP3	SSTYP2	SSTYP1	SSTYP0

参数 SSTYP3~SSTYP0 设定主轴传感器的种类,即设定安装在主轴上的分离式检测器 (连接于连接器 JYA3 或 JYA4 的检测器)的种类。

[SSTYP3	SSTYP2	SSTYP1	SSTYP0	主轴传感器的种类
ſ	0	0	0	0	无(不进行位置控制)
ſ	0	0	0	1	将电机传感器使用于位置反馈
Γ	0	0	1	0	α 位置编码器
[0	0	1	1	分离式 BZi 传感器、CZi 传感器
ſ	0	1	0	0	α位置编码器 S

注释
在使用矩形波 A/B 相 1024p/rev 的位置编码器时,应进行与α位置编码器
相同的设定(0,0,1,0)。

2)当主轴和电机、主轴和编码器之间有升降比时,需要正确设定参数 4056~4059、4171~4174。上述参数设定有误,将会造成攻丝误差大、定向位置不准等现象。

5.3 多主轴控制的刚性攻丝

将多主轴控制MSP(8133#3)设定为有效时,可选择第1~第2主轴执行刚性攻丝。主轴的选择方法,可按照下表的参数设定予以选择。

		参数 SRS(No.5200#7)		
		"0"	"1"	
参数 MPP (No 3703#3)	"0"	用主轴选择信号 SWS1~SWS2 来选择	用刚性攻丝主轴选择信号 RGTSP1~RGTSP2 来选择	
(110.5705#57	"1"	用 NC 指令(地址 P) 来选择		

5.4 基于其他路径的主轴刚性攻丝

2 路径的机械中,可利用路径间主轴控制功能来使用与指令不同的路径连接主轴进行 刚性攻丝。执行刚性攻丝的主轴,通过主轴选择信号来选择。此外,除了通过多主轴控制功 能进行路径的选择外,还可以选择在该路径内的哪个主轴执行刚性攻丝。

(1) 不使用多主轴控制功能的情形:

通过将参数SPR(No.3703#4)设定为"1",即可在S指令时一样地操作主轴指令选择信号, 由此来切换某一路径的主轴随从于哪个路径的刚性攻丝指令。

主轴指令选择信号如下所示:

2路径系统: SLSPA<G063.2>(路径1的主轴受控于路径2的指令) SLSPB<G063.3>(路径2的主轴受控于路径1的指令)

- (2) 使用多主轴控制功能的情形:
 - 1) 基于信号的指令

通过将参数EMS(No.3702#1)设定为"0",将参数2P2(No.3703#0)、SPR(No.3703#4) 设定为"1",即可在任意的路径中执行使用任意主轴的刚性攻丝。指令刚性攻丝前,通 过信号来选择执行刚性攻丝的主轴。

具体的信号有:

SLSPA<G063.2>(路径1的主轴受控于路径2的指令) SLSPB<G063.3>(路径2的主轴受控于路径1的指令) SWS1<G27.0>(路径1的第一主轴选择信号) SWS2<G27.1>(路径1的第二主轴选择信号) SWS1#2<G1027.0>(路径2的第一主轴选择信号) SWS2#2<G1027.1>(路径2的第二主轴选择信号)

2) 基于地址P 的指令

通过将参数EMS(No.3702#1)设定为"0",将参数2P2(No.3703#0)、SPR(No.3703#4) 设定为"1",即可使用连接于其它路径的主轴执行刚性攻丝。由此可利用程序(P代码) 来选择通过将参数MPP(No.3703#3)设定为"1"而执行刚性攻丝的主轴。通过在刚性攻丝 的S指令中添加地址P,即可选择执行刚性攻丝的主轴。

(例: M29 S1000 P22;)

P的值和由此选择的主轴的对应关系,必须事先设定在参数(No.3781)中。

注意事项:

- 指令刚性攻丝的路径和执行刚性攻丝的主轴,必须是1 对1 的关系。
- 通过本功能执行使用其他路径的主轴的刚性攻丝时,必须事先将执行刚性攻 丝的主轴设定为主轴控制方式。
- 本功能无法在基于伺服电机的刚性攻丝中使用。

5.5 刚性攻丝相关的控制信号(PMC 地址)

- (1) 信号的意义
 - 1) 刚性攻丝信号 RGTAP <输入信号 G61.0>
 - 2) 主轴旋转方向信号 RGSPM, RGSPP(F65.0,F65.1)一般不处理。
 - 3) 刚性攻丝处理中信号 RTAP (F76.3)
 - 4) 齿轮选择信号 GR3O, GR2O, GR1O(F34.0,1,2)

- 5) 齿轮选择信号 GR2, GR1(G28.0,1)
- 6) 齿轮选择信号 GR21 (G29.0,T 系列)
- 7) 刚性攻丝主轴选择信号 (RGTSP2, RGTSP1) (G61.4,5)
- 8) 刚性攻丝主轴使能(正转 SFRAG70.5)信号 (RGTSP2, RGTSP1)(G61.4,5)

5.6 刚性攻丝 PMC 程序的实现

115

5.7 与刚性攻丝相关的部分参数设定

参数号	符号	说明	必设	参考	备注
5200#0	G84	指定刚性攻丝的方法		0	
5200#1	VGR	在刚性攻丝方式时,是否使用主轴和位置 编码器之间的任意齿轮比		0	当主轴与 位置编码 器之间有 特殊变比 时
5200#2	CRG	刚性攻丝方式,刚性攻丝取消指令的方式		0	
5200#3	SIG	刚性攻丝方式,齿轮切换功能是否使用 SIND <g032~g033></g032~g033>		0	
5200#4	DOV	在刚性攻丝回退时,倍率是否有效		0	
5200#5 (M)	PCP	刚性攻丝时,是否使用是否高速排削攻丝 循环		0	
5200#6	FHD	在刚性攻丝中, 进给保持和单程序段信号		0	

		目不右為			
5000//7	000	走行有效			
5200#7 (T)	585	在多王轴控制时,用于选择刚性以丝的王 轴选择信号		0	
5201#0 (M)	NIZ	刚性攻丝时,是否使用平滑控制		0	
5201#2 (T)	TDR	刚性攻丝时,切削时间常数的选择		0	
5202#0	ORI	启动攻丝循环时,是否执行主轴准停		0	
5204#0	DGN	在诊断画面中,攻丝同步误差(最小单位)/		1	DGN452,
5040					455
5210		攻丝万式的 M 代码(255 以下时)		0	
5211		在刚性攻丝时拉抜动作的倍率值		0	
5212		攻丝方式的 M 代码(255 以上时)		0	
5213 (M)		深孔刚性攻丝循环的返回量		0	
5214		刚性攻丝同步误差宽幅设定	0		
5221- 5224		刚性攻丝主轴侧的齿数(一档-四档))			
5231- 5234		刚性攻丝位置编码器侧的齿数(一档-四档)			
5241-		刚性攻丝主轴的最高转速(一档-四档)	0		
5261- 5264		刚性攻丝中各齿轮的加/减速时间常数	0	50-3 500	要仔细调 试(通过 观察加减 速)
5271- 5274		刚性攻丝拉拔时的加/减速时间常数			
5280		刚性攻丝时, 主轴和攻丝轴的位置环增益 (公共参数)	0		和 4065-8 设定值要 一致
5281- 5284		刚性攻丝时,主轴和攻丝轴的位置环增益 (一档-四档)			
5291- 5294		刚性攻丝时,主轴环增益倍乘比(一档- 四档)			
5300		<u></u> 刚性攻丝时,攻丝轴的到位宽度	0	20	影响精度
5301		刚性攻丝时,主轴的到位宽度	0	20	影响精度
5310		刚性攻丝时,攻丝轴运动中的位置偏差极 限值	0		调整时, 先设定为 最大值, 最后再修 改
5311		刚性攻丝时,主轴在运动中的位置偏差极 限值	0		同上
5312		刚性攻丝时,攻丝轴停止时的位置偏差极 限值	0		同上
5313		刚性攻丝时,主轴在停止时的位置偏差极 限值	0		同上
5321- 5324		刚性攻丝时,主轴的反向间隙(一档-四 档) 刚性攻丝时,主轴的反向间隙(T 只有 5321)			

4000#0	ROTA1	主轴和主轴电机之间的安装方向	0	*	依机床而定
4000#2	POSC 1	主轴和位置编码器之间的方向	0	*	依机床而定
4002#1	POSC 2	位置编码器是否使用	0	1	
4003#7, 4003#6 4003#5 4003#4	PCPL2 PCPL1 PCPL0 PCTY PE	编码器的类型	0	*	依电机和反 馈元件而定
4006#7	BLTRG D	使用内装传感器(MZ Sensor)进行刚性攻丝时,使用任意齿轮比	*	*	依电机和反 馈元件而定
4056		主轴和电机之间的齿轮比(高) CTH1A=0,CTH2A=0	0	*	依机床而定
4057		主轴和电机之间的齿轮比(中高) CTH1A=0,CTH2A=1	0	*	依机床而定
4058		主轴和电机之间的齿轮比(中低) CTH1A=1,CTH2A=0	0	*	依机床而定
4059		主轴和电机之间的齿轮比(低) CTH1A=1,CTH2A=1	0	*	依机床而定
4044		伺服控制/同步控制时速度环比例增益(高档 齿) CTH1A=0	O	Σ_{γ}	
4045		伺服控制/同步控制时速度环比例增益(低档 齿) CTH1A=1	O	Σ_{γ}	
4052		伺服控制/同步控制时速度环积分增益(高档 齿) CTH1A=0	O	\$	
4053		伺服控制/同步控制时速度环积分增益(低档 齿) CTH1A=1	Ø	\$	
4085		伺服控制/同步控制时电机电压的设定	Ø	Δ	
4137		伺服控制/同步控制时电机电压的设定(低速)	O	${\swarrow}$	
4099		刚性攻丝时,电机激磁稳定的延迟时间	Ø	0	
4065-40 68		刚性攻丝时,主轴的环路增益(各档)	0		和 5280 设 定一致

注: 和模拟主轴相关的参数不要设定。

- 〇 : 必须设定
- ◎ : 自动设定
- ☆ : 自动设定
- ★: 根据不同的条件设定

5.8 刚性攻丝的诊断号

1) 指令脉冲和位置偏差量的显示

- 主轴的位置偏差量 → 诊断显示 No. 450
- 分配给主轴的指令脉冲(瞬时值) → 诊断显示 No. 451
- 分配给主轴的指令脉冲的累计值 → 诊断显示 No. 454
- 2) 刚性攻丝同步误差显示

- 主轴换算移动指令之差 → 诊断显示 No. 455
- 主轴换算位置偏差之差 → 诊断显示 No. 456
- 同步误差 → 诊断显示 No. 457
- 主轴换算移动量之差(最大值) → 诊断显示 No. 460
- 主轴换算机械位置之差(瞬时值) → 诊断显示 No. 461
- 主轴换算机械位置之差(最大值) → 诊断显示 No. 462
- 3) 误差的比率差的显示
 - 主轴和钻孔轴的误差量之差的瞬时值 → 诊断显示 No. 452
 - 主轴和钻孔轴的误差量之差的最大值 → 诊断显示 No. 453

在调试中,要先空走程序(不加工),观察以上诊断内容,如果 452 在运行过程中数值 不是 0,可能是增益不相同(主轴和攻丝轴 5280-4,4065-8),检查并修改,如果 452 在加 减速时比较大,可能时间常数(5261-4)不合适,增大或减小设定值。调试结束后,要使 453 的值接近 1。或者 450 的数值小于 200

5.9 利用伺服优化软件调试刚性攻丝

SEVER GUIDE 软件带有刚性攻丝测试程序,利用伺服软件测定 Z 轴同步误差和主轴 启动速度的变化,可以更准确分析和检验刚性攻丝过程中同步误差的变化。利用伺服软件的 测试步骤如下:

- 1) 设定参数 3700#5: 1, 输出 Z 轴同步误差。
- 2) 准备测试程序:

在程序窗口可以按照下面步骤创建和传送程序。

1. 第一步通过设定不同的条件创建程序。

选中刚性攻丝,并设定其 它加工条件,一般使用默 认值

- 2. 通过按下 [适用] 键来决定程序。
- 3. 在程序号中输入程序号。

	ᡂ 程序 - Untitled(脱机)		_ 🗆 🗙
	文件(E) 编辑(E) 御览(Y) 工具(E)	系统 (E) 帮助 (H)	
	DF98 5 XBR		
	X-Z 10.0000mm/div	程序模式 自由程序 🗾	M系 ▼
		橫轴 X 🔽 纵轴 Z 🔽	-G代码
	······································	● 轴进给 ● 切削进给 ● 快速移动	С відс
		Tap Depth 20 R 点	10
		速度 2000 主轴速度	2000
文木编辑框 📏	G91G94 N1	攻丝M代码 M29 重复	1
入平漏衬柜	N2M2952000	起始坐标	30
	G80 G04X1	高精度控制模式 正常	
	N999604X1.	□ 使用高速HRV电流控制	取消
	1 International	脉冲序号N 1	适用
在此处输入程	程序号 输入		
序号			

注) 有必要确认通过 SERVO GUIDE 生成的程序。 如果想修改程序或添加代码如 M 代码,可以直接编辑程序文本。

4. 第三步按下 [发送子程序] 🥮 键, [发送主程序] 🤐 键

3) 打开图形窗口, 按下 Ctrl+T 选为" XTYT"方式, 选中 📴 或按下 F9, 出现图形通道设 定画面。

图形设:	定					×	
详细	v]			设 设 定	E主轴采样时间)
测重说	定 操作液	ぽ示│比例(Y-Ti	me) 光栅尺(×Y) 比例(圆弧)			
测定 采样	数据点 循环	4000 ÷	触发路径川 采祥循环(3	顺序号 🔽 🔽	1 ÷ 1msec 🔻	二进制兼容マ 同步(SV-SP)マ 自动回原点	
注释:	1					●自动比例尺 ●	
注释:	2					〇一次	
时间	和数据					0 总是	
	属性				数据切换(D)	时间切换(<u>T</u>)	
	Axis	Kind	Unit	Coef	Meaning	Origin	
CH1	Z (2)	SYNC	pulse	1.0000000	同步偏差	0.0800	
CH2	S1 (-1)	SPEED	1/min	1.0000000	电机速度	0.000	
CH3							
CH4	님						
CH5	님			送知	设立		
CH6	<u> </u>			ИТАЦ	K AE		
	•			\sim		•	
			确定	取消			

通道		×		
CH1 CH2	СНЗ СН4 СН5 СН6			
轴 种类 单位 换算系数 换算基准 原始值	Z (2) ▼ SYNC ▼ pulse ▼ 1 (物理值.) 1 (原始数据值.) 0	□ 扩展地址(E) 0		
确定取消				
通道		×		
CH1 CH2	СНЗ СН4 СН5 СН6			
轴 种类 单位 换算系数	S1(-1) ▼ SPEED ▼ 1/min ▼ 1 (物理值.)	□ 扩展地址(E) 0 == 切換(S) -12 == 说明 电机速度 偏移 '0': 4096=1[min-1]		
與耳莖 使 原始值	1 (原始致始祖。)	偏移 '-12': 1=1[min-1](默认)		

4). 以上采样通道设定完成后,按下 🎸 ,然后再按下采样按钮 ▶ ,循环启动生成的 程序,伺服软件测定波形如下:

取消

确定

通过上面的测定波形,可以更加准确分析刚性攻丝过程的同步误差,在伺服软件侧仔细调整加减速时间常数以及增益等相关参数,观察以上波形,确认最合理的 值。相应参数的修改直接在伺服软件上操作,如下:

₽ 参数 - Untitled(联机)		_ 🗆 🗙
文件 (2) 编辑 (2) 移动 (2) 窗口 (2) 帮助 (<u>H</u>)	
○ SV ⊙ SP 组(G) 刚性攻丝	▼ 轴 51 ▼ ▼ き	参数提示
指令设定 速度控制(MAIN) 速度控制(SUB) (立置控制 精细加减速(FAD)	
_ 最大主轴速度(min-1)	□ 任意齿轮比(CNC)	
(第一档齿轮) 3000 🕂	□ 使用任意齿轮比(主轴)	
(第二档齿轮) 3000 🛨	□ 王轴齿轮数 (第一档齿轮)	0 +
(第三档齿轮) 3000 🛨	(第二档齿轮)	0 ÷
(第四档齿轮)(T系列) 0 ;	(第三档齿轮)	0 ÷
	(第四档齿轮)(T系列)	0 ÷
	位置编码器齿数	
(第一伯囚犯) 2500 - (第二指告轮) 2500 - (第二指告轮)	(第一档齿轮)	0 ÷
	(第二档齿轮)	0 ÷
(第二伯囚轮) 2500 -	(第三档齿轮)	0 ÷
(第四档齿轮)(T系列) 0 🗧	(第四档齿轮)(T系列)	0 ÷

5.10 刚性攻丝的报警号

报警号	显示内容	说明
200	非法 S 代码指令	 刚性攻丝时, S 指令超出给定的范围或没有指令。 S 代码的最大值由参数 No:5241~5242 设定。 发 生 报 警 时 请 检 查 该 参 数 的 设 定 值 (5200#0 G84 的不当设定)
201	无进给速度	程序中未制定 Fxxxx 值,请修改程序
202	位置 LSI 溢出	主轴分配的值太大
203	程序未指定刚性攻丝方 式	M29 或 Sxxxx 的指令格式错误
204	轴的指令非法	M29 或 Sxxxx 之间指令了轴的移动。
205	刚性攻丝方式 DI 信号关 闭	M29 指令后,刚性攻丝信号(G61#0)不是 1。 检查梯形图是否正确。★(在使用多主轴控制 时,请注意轴选信号 SW2 是否断开)
206	不能改变坐标平面	指令了切换坐标平面命令。修改程序
207	攻丝的数据不匹配	攻的距离太长或太短
410	伺服报警: n 轴超差	N轴(攻丝轴 1~4)停止时的误差超过设定值 (No:5312)
411	伺服报警: n 轴超差	N轴(攻丝轴 1~4)运动时的误差超过设定值 (No:5313或 5314)
413	伺服报警: n轴LSI溢出	N 轴(攻丝轴 1~4)的误差计数器的值超过 -2 ³¹ ~2 ³¹ ,请修改有关位置环的参数。
SP740	刚性攻丝报警:超差	主轴移动时位置误差超出设定值
		(参数 No: 5310 运动 / 5312 停止)
SP741	刚性攻丝报警:超差	主轴移动时误差超过设定值或同步误差超过 设定值(参数 No: 5214)
SP742	刚性攻丝报警:LSI 溢出	攻丝时主轴侧 LSI(集成电路)溢出

第六节 主轴定向

6.1 概述

主轴定向是使主轴停止在某一特定位置的功能,可以选用以下几种元件作为位置信号:

- 1) 外部接近开关+电机速度传感器.
- 2) 主轴位置编码器(编码器和主轴 1:1 连接).
- 3) 电机或内装主轴的内置传感器(MZi,BZi,CZi),主轴和电机之间齿轮比为 1:1

6.2 使用外部接近开关(1转信号)

6.2.1 α i/β i 放大器连接

a). PNP

b). NPN

c). 两线 NPN

6.2.2 a 放大器连接

(13)

b). NPN

c). 两线 NPN

6.2.3 参数设定

. α i/βi放大器

/0 +/ +////		
参数号	设定值	备注
4000#0	0/1	主轴和电机的旋转方向相同/相反
4002#3,2,1,0	0,0,0,1	使用电机的传感器做位置反馈
4004#2	1	使用外部一转信号
4004#3	根据表1设定	外部开关信号类型
4010#2,1,0	0,0,1	设定电机传感器类型
4011#2,1,0	初始化自动设定	电机传感器齿数
4015#0	1	定向有效
4056-4059	根据具体配置	电机和主轴的齿轮比
4171-4174	根据具体配置	电机和主轴的齿轮比

6.2.4 外部开关类型的参数说明

1) 表 1, 参数 4004#3 的设定(对于 a i/ β i 放大器)

开关	检测方式		开关类型	SCCOM 接法(13)	设定值
二线				24V(11 脚)	0
		常开	NPN	0V(14 脚)	0
	突起		PNP	24V(11 脚)	1
		常闭	NPN	0V(14 脚)	1
二线			PNP	24V(11 脚)	0
	凹槽	常开	NPN	0V(14 脚)	0
			PNP	24V(11 脚)	1
		常闭	NPN	0V(14 脚)	1
			PNP	24V(11 脚)	0

注: 检测方式如下图所示:

2) 对于主轴电机和主轴之间不是1:1的情况,一定要正确设定齿轮比(参数4056-4059和 4500-4503)。

6.2.5 连接示意图

6.3 使用位置编码器

6.3.1 连接示意图

6.3.2 参数

参数号	设定值	备注
4000#0	0/1	主轴和电机的旋转方向相同/相反
4001#4	0/1	主轴和编码器的旋转方相同/相反
4002#3,2,1,0	0,0,1,0	使用主轴位置编码器做位置反馈
4003#7,6,5,4	0,0,0,0	主轴的齿数
4010#2,1,0	取决于电机	设定电机传感器类型
4011#2,1,0	初始化自动设定	电机传感器齿数
4015#0	1	定向有效
4056-4059	根据具体配置	电机和主轴的齿轮比

6.4 使用主轴电机内置传感器

6.4.1 连接示意图

6.4.2 参数

参数号	设定值	备注
4000#0	0	主轴和电机的旋转方向相同
4002#3,2,1,0	0,0, 0,1	使用主轴位置编码器做位置反馈
4003#7,6,5,4	0,0,0,0	主轴的齿数
4010#2,1,0	0,0,1	设定电机传感器类型
4011#2,1,0	初始化自动设定	电机传感器齿数
4015#0	1	定向有效
4056-4059	100或1000	电机和主轴的齿轮比

6.4.3 主轴和电机之间非1:1连接

对于主轴和电机之间非 1:1 的情况,存在高低档位时,采用外部一转信号定向,需要 正确设定参数 NO.4171~NO.4174,该参数分为两档,通过信号 CTH1A 选择。

4171	电机传感器与主轴之间的任意齿轮比分母 (HIGH)	CTH1A=0
4172	电机传感器与主轴之间的任意齿轮比分子(HIGH)	CTH1A=0
4173	电机传感器与主轴之间的任意齿轮比分母 (LOW)	CTH1A=1
4174	电机传感器与主轴之间的任意齿轮比分子 (LOW)	CTH1A=1

数据单位:

数据范围: 0~32767

0

标准设定:

在电机传感器(Mi 或 MZi 传感器)的反馈信号上乘以齿轮比,将其作为主轴位置 反馈信号,设定在使用检测的任意齿轮比功能(DMR 功能)时的变换系数(分子、 分母)。

在电机轴转动 P 次时主轴转动 Q 次时(P,Q 为相互间没有公约数的整数),设定值 为

No.4171(CTH1A=1时 No.4173)=P

No.4172(CTH1A=1 时 No.4174)=Q。

当本参数被设为"0"时,分别作为被设为"1"时处理。

注释 在使用外部一次旋转信号(接近开关)时,请用本参数来设定电机传感器和 主轴之间的任意齿轮比,并使用检测的任意齿轮比功能(DMR 功能)。

此外,还需要正确设定参数 NO.4056~4059

注释

在没有为本参数设定适当的值时,会导致在定向时主轴持续旋转而不会 停下等预料之外的动作。务须设定适当的齿轮比。

6.5 梯形图编制说明

.

首先通过 M 代码译码 M19 (定向指令)到 R11.0 (可自行定义)。

F0007.0 ACT	SUB25 DECB	0001	
		F0010 M CODE	
		000000019	
		R0011 M19-26	

再通过 R 地址把定向指令输入到 G70.6(主轴定向信号),并形成自锁。最后,把定向 完成信号 F45.7 输出给 G4.3,完成 M 代码的执行。

6.6 有关地址信号和参数

●CNC → 串行主轴放大器

		#7	#6	#5	#4	#3	#2	#1	#0
地址	G0070	MRDYA	ORCMA	SFRA	SRVA	CTH1A	CTH2A		
地址	G0071							*ESPA	ARSTA

●串行主轴放大器 → CNC

SSTA(F45.1)主轴停止检测信号,当速度小于参数 4024 的值时为 1。

其他相关参数:

参数号	参考值(范围)	备注
3729#0	根据具体配置	在串行主轴中,是否执行基于位置编码器的停止位置外
		部设定型主轴定向功能
4038	0 (0~32767)	主轴定向速度
4077	-4095~4095	位置编码器方式定向停止位置偏移量(MAIN 主轴)
4228	-4095~4095	位置编码器方式定向停止位置偏移量(SUB 主轴)
8135#4	具体配置设定	主轴串行输出时,是否使用主轴定向

第七节 Cs 轮廓控制

7.1 简介

CS轮廓控制是在串行主轴上组合专用的检测器,通过主轴电机进行定位的一种功能。 其与主轴定位相比精度更高,也可以进行与其他伺服轴之间的插补。我们对串行主轴的主轴 速度进行控制的情形叫做主轴旋转控制(通过速度指令来使主轴旋转),并将对主轴的位置 进行控制的情形叫做主轴轮廓控制(通过移动指令来使主轴旋转)。对该主轴进行轮廓控制 的功能就是Cs轮廓控制功能。主轴旋转控制和Cs轮廓控制的切换,随PMC发出的DI信号而 定。Cs轮廓控制轴的手动以及自动运行,在Cs轮廓控制方式中与通常的伺服轴相同。

7.2 系统配置

可以使用Cs轮廓控制功能的系统配置如下所示。

1) 使用α编码器

2) 使用 a s 编码器

3) 使用 Mzi、Bzi、或 Czi

[系统配置例 2]

4) 使用分离式 Mzi、Bzi、或 Czi

上述编码器的相关参数设置请参考第六节。

7.3 PMC 信号

地址	信号名	意义	备注
G27#7	CON	Cs轮廓控制切换信号	指令第1主轴的主轴旋转控制方式和Cs轮廓控制方式的切换。参数
G274#0	CONS1 (第一主轴)	各主轴 Cs 轮廓控制切 拖信号	CSS(No.3704#7)="0"时有效。 指令主轴的主轴旋转控制方式和 Cs轮廓控制方式的切换 参数
G274#1	CONS2 (第二主轴)		CSS(No.3704#7)="1"时有效。这种 情况下,Cs轮廓控制切换信号 CON <g027.7>无效。</g027.7>
F44#1	FSCSL	Cs轮廓控制切换完成 信号	通知第1主轴已经切换到Cs轮廓控制方式的事实。 参数CSS(No.3704#7)="0"时有效。
F274#0	FCSS1 (第一主轴)	各主轴 Cs 轮廓控制切 换完成信号	参数CSS(No.3704#7)="1"时有效。 这种情况下, Cs轮廓控制切换完成
F274#1	FCSS2 (第二主轴)		信号FSCSL <f044.1>无效。</f044.1>
F94#0~F94.4	ZP1~ZP5	Cs轮廓控制轴参考点 返回完成信号	在Cs轮廓控制方式中,执行手动参考点返回或者基于G28的自动参考点返回指令,Cs轮廓控制轴处在参考点位置就成为"1"。

7.4 PMC 程序实现(参考)

上面梯形图中,在自动运行方式下,M20(R11.1)启动 Cs 轮廓控制功能,M21(R11.2)为退出 Cs 轮廓控制功能。在 JOG 方式下,X30.0和 X30.1 分别开启和关闭 Cs 轮廓控制功能。注意,在自动方式下,M 信号的完成信号要处理。

7.5 参数设置

功能参数:

参数号	意义	参考设定值	备注
8133#2	主轴 CS 轮廓控制功能有效	1	
8130	系统控制轴数	4	X, Y, Z, C 三轴
轴名称和显	2示:		
参数号	意义	参考设定值	备注
1005#0	开机后没有返回参考点不报警	1	C轴设定
1006#0	C轴为旋转轴	1	C轴设定
1020	轴名称	67	C轴设定
1022	轴属性	0	C轴设定
1023	伺服轴轴号	-1	C轴设定
1260	旋转轴一转移动量	360000 或 360.0	C轴设定

速度和加减速时间:

	参数号		意义	参考设定值	备注
	1420	快速移	多动速度	2000	C轴设定
	1421	F0 速/	Ť	600	C轴设定
	1425	回零低速		600	C 轴为 NC 轴
	1620	快速移动时间常数		50-200	C轴设定
	1621	快速移	动时间常数 T2	50-100	C轴设定
	1820	指令信	至乘比(1)	2	C轴设定
	1821	参考计	十	360000	C轴设定
	1825	各轴的	前伺服环路增益	1000~3000	C轴设定
	1826	到位宽	子 · · · · · · · · · · · · · · · · · · ·	20-100	C轴设定
	1828	运动时	位置误差限制	10000	C轴设定
	1829	停止时	位置误差限制	200-500	C轴设定
	1850	柵格偏	品移量	200-500	C轴设定
	4021	Cs 轮厚	···	100	设定范围 0~32767
	4074	伺服方	示式时原点返回速度	0~32767	设定值为 "0" 时Cs
		1 4/4/4/			轮廓控制时主轴最高
					转速(No 4021)中所
					设定的值,成为参考
					点返回速度
主	轴参数设,	置.			
					
	<u>参</u> 数5	1	音♥	参考设定值	条注
	3700#1 (N	JRF)	串行主轴切换为Cs轴轮廓	1	西 1上
	5700/11 (1	uu /	控制后的最初移动指令	1	
			(G00)中进行通堂的定位动		
			作		
	3704#7 (CSS)	YA主轴中进行Cs 轮廓控制	1	
	3729#2 ((CSN)	Cs轮廓控制方式OFF时是否	1	将本参数设定为1. 即
	5725112 (进行到位检测	-	成为与FS0i-C等同的
					动作
	3729#7 (N	JCS)	Cs轮廓控制轴的设定单位		0 [.] 假设为IS-B。
	5725117 (1	(00)			1. 假设为IS-C。
	3900		与Cs轮廓控制轴进行插补	0~控制轴数	没有与Cs轮廓控制轴
			的伺服轴号		进行插补的伺服轴
					时,设定0
	3901~390	4	与Cs轮廓控制轴进行插补	0~9999	
			时的伺服轴用环路增益		
	3910		与 Cs 轮廓控制轴进行插补	0~控制轴数	没有与Cs轮廓控制轴
			的伺服轴号(第二组用)		进行插补的伺服轴时
					或者与Cs轮廓控制轴
					进行插补的伺服轴在
					1轴以下时,设定0
	3911~3914	4	与Cs轮廓控制轴进行插补	0~9999	
			时的伺服轴用环路增益		
	3920		与 Cs 轮廓控制轴进行插补	0~控制轴数	没有与Cs轮廓控制轴
			的伺服轴号(第三组用)		进行插补的伺服轴时
或者与Cs轮廓控制轴 进行插补的伺服轴在 2轴以下时,设定0

3921~3924	与 Cs 轮廓控制轴进行插补 时的伺服轴用环路增益	0~9999	
3930	与 Cs 轮廓控制轴进行插补 的伺服轴号(第四组用)	0~控制轴数	没有与Cs轮廓控制轴 进行插补的伺服轴时 或者与Cs轮廓控制轴 进行插补的伺服轴在 3轴以下时,设定0
3931~3934	与 Cs 轮廓控制轴进行插补 时的伺服轴用环路增益	0~9999	
4046~4047	Cs轮廓控制时的速度环路 比例增益	30	0~32767
4054~4055	Cs轮廓控制时的速度环路 积分增益	50	0~32767
4069~4072	Cs轮廓控制时位置增益	0~32767	
4135	Cs轮廓控制时栅格偏移量	-360000~360000	

其他参数的设定参照《OID 连接说明书(功能)》的主轴 CS 轮廓控制部分。

7.6 Cs轮廓控制轴坐标建立功能

将串行主轴由主轴旋转控制切换为Cs轮廓控制时,当前位置将会丢失。本功能通过将Cs轴坐标建立请求信号Gn274.4~5(CSFIx)设定为'1',无需执行参考点返回操作即建立当前位置。通电后,在从执行Cs轮廓轴的参考点返回操作到电源切断期间,本功能都有效。

- 1) Cs 轴坐标建立步骤
 - a. 将M代码作为触发而将Cs轮廓控制方式置于ON,并将Cs轴坐标建立请求信CSFIx <Gn274.4~5>设定为'1'。
 - b. Cs轴原点建立状态信号CSPENx<Fn048.4, 052.4>若是'1',则建立Cs轴的绝对坐标、相对坐标、机械坐标的坐标系。(要设定相对坐标,需要将参数PPD (No.3104#3)设定为 "1"。)
 - c. 坐标系建立后,参考点建立信号ZRFx<Fn0120.0~4>成为'1',所以请将Cs轴坐标建立 请求信号CSFIx<Gn274.4~5>设定为'0'。
 - d. 请执行针对M代码的FIN处理。
- 2) PMC 信号

地址 G274#4~5	信号名 CSFI1/CSFI2	意义 Cs轴坐标建立请求 信号	备注 Cs轮廓控制方式中本信号为 '1'时,基于Cs轴的机械位置建 立绝对坐标、机械坐标。
F274#4~5	CSFO1/CSFO2	Cs轴坐标建立报警 信号	Cs轴坐标建立尚未正常完成 时为1
F48#4	CSPENA (第一主轴)	Cs轴原点建立状态 信号	在Cs轮廓控制方式下参考点 返回动作正常完成时为1。

F52#4 CSPENB (第二主轴)

3)参数设定

参数号	意义	参考设定值	备注
3712#2	Cs轮廓控制方式中,若已经建立	1	
	原点,是否基于主轴的机械位置		
	将自动设定机械坐标和绝对坐标		
	的切能直于有效		
4353#5	传输Cs轴的位置数据的功能置于	1	使用本功能时,请将
	有效		参数(No.4016#7)设
			定为"0"。

7.7 报警与信息

报警号	信息	内容
PS0194	在主轴同步方式指令了其 它主轴指令	在主轴同步控制方式、主轴简易同步控制方式 中,指令了Cs轮廓控制方式、主轴定位指令或 者刚性攻丝方式
PS0197	在主轴转速控制方式指令 了C轴控制	当Cs轮廓控制切换信号切断时,程序设定了沿Cs轴的移动指令。
SP0752	主轴方式切换错误	串行主轴控制中,向Cs轮廓方式、主轴定位, 刚性攻丝方式的切换,和向主轴控制方式的切 换尚未正常结束。如果主轴放大器对CNC发出 的方式改变指令不能作出正确反应,就会发出 该报警。
PS5346	回零未结束	没有建立Cs轮廓控制轴的坐标。请执行手动回 参考点操作。 1 对于Cs轴原点建立状态信号CSPENx='0'的 Cs轴,已建立了Cs轴坐标的情形。 2 没有从主轴放大器传输来位置信息的情形 3 开始建立Cs轴坐标时处在伺服关断状态。 4 Cs轴处在同步控制中或者处在重叠控制中 5 坐标建立中变成了紧急停止状态。 6 试图相对坐标建立中的Cs轴解除混合控制 (T系列)的情形。 7 试图相对坐标建立中的Cs轴开始同步/混合/ 重叠控制(T系列))

第八节 I/O Link 轴控制

8.1 概述

I/O Link 轴的控制是通过系统的 FANUC I/O Link 对伺服电机进行控制的一种方法。该控制方法的特点是通过 PMC 对该轴的动作进行控制,同时该轴不能与系统控制的其他伺服轴进行插补,另外该轴还需要占用系统 I/O Link 的输入输出点。因此,该轴通常用来对系统的外围机构进行固定动作的控制,完成某种特定的动作和运动。

通常情况下,当系统提供的基本轴不够用时,为了增加 CNC 的控制轴数,但不需要该 轴进行插补的情况下,利用 FANUC 系统提供的 Power Mate CNC 管理功能可以对 I/O Link 轴进行控制,从而实现特定的运动。常见的应用包括刀库控制、旋转工作台以及生产线上的 点位控制等。本节将就上述功能进行介绍,通过示例程序演示梯形图的编辑和功能的实现。

8.2 硬件连接

8.2.1 接口

I/O Link 轴的驱动是通过βi 系列放大器完成的。该放大器通过 I/O Link 接口与系统相 连,系统通过 PMC 梯形图对该接口的控制,完成对 I/O Link 轴的控制。

由于 I/O Link 轴的控制是通过 FANUC I/O Link 实现控制的,因此需要占用 I/O Link 的 128 个输入点和 128 个输出点。

8.2.2 地址分配

如上图 2.1.1 所示,当使用 I/O Link 作为系统与放大器之间的通讯时,需要设定通讯地址。通过该通道完成通讯。由于通过 I/O Link 对该轴进行控制,因此该轴的地址分配符合系统对 I/O 地址分配的原则。

对于系统侧而言,进行 I/O 模块的地址分配时,需要分配一个 16 字节大小的模块。例 如: OC02I 或者 OC02O。

对于本书中关于 I/O Link 轴设定方面的地址表示方法,通常表示为:

Y_v+0

如果从 Y50 开始分配,则在 Y50 进行分配: 1.0.1.OC02O,此时 y=50。也就是说"y" 表示开始的地址值。在本节后面的叙述中,都将以 X50 与 Y50 作为起始地址进行叙述,但 是在实际使用当中可以对其进行修改。

另外一点需要说明的是,由于 I/O Link 轴对于系统而言属于外部的通讯设备,因此,地址 Y 的信号对于系统而言是输出信号,而对于 I/O Link 轴而言是输入信号,该信号用于控制其状态与动作;而 X 地址对于 I/O Link 轴而言是其发送至系统的状态与信息反馈。

8.2.3 硬件连接

下图为βi放大器单元(4/20A)的示意图。

其中 L1、L2、L3 为三项电源线; U、V、W 为三相电机动力线; DCC/DCP 为放电电阻

接口; CXA19B 接入 24V 直流电; CX29 为电磁接触器控制信号接口; CX30 为急停信号接口; JF1 为电机反馈电缆接口; CX5X 接口是使用绝对式编码器时的电池接口; LED 灯用来 指示当前放大器的状态以及作为报警状态提示。

注:常用接口说明

1. 关于分离式放电电阻的连接

图 9.2.3 外置放电电阻连接示意图

在使用外置放电电阻的情况下,放大器的连接如上图示。如果系统外部不使用放电电阻,则需要将 CZ7 (DCP)和 CZ7 (DCC)断开,注意不能短接;但是需要使用短接插头将 CXA20 的 1、2 引脚短接,屏蔽对过热信号进行的检测。

2. 关于 JA72 接口的连接

在 β i 放大器上,接口 JA72 取代了原有的 JA35 接口,其内部的线路连接也有一定的变化。主要变化是将急停取消,接口内部的连线请按照下图进行连接:

图 9.2.4 JA72 引脚连接示意图

在使用外部减速档块回零的情况下,高速互锁信号(*RILK)无效,该接口信号作为回零减速信号使用。

相关参数:

PMM 画面中,对 I/O Link 轴的参数 No.11#2 DZRN,设为1则表示使用外部减速档块回零。而默认设定值为0,使用无档块回零方式。

8.3 参数设定

I/O LINK 轴有自己单独的参数设定画面和位置画面。其相关参数均在此画面进行设定。

POWER MATE <mark>実行</mark> ***	CNC	:管	理功	眬					0	01	2	3	١	10)0	0	00
通道 1 <mark>No.1</mark> 从控 2																	
参数																	
00000	Ø	0	0	0	Ø	Ø	Ø	Ø	00010	1	Ø	0	Ø	Ø	Ø	Ø	Ø
00001	Ø	Ø	Ø	Ø	Ø	Ø	1	Ø	00011	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø
00002	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	00012	Ø	Ø	Ø	Ø	Ø	Ø	1	Ø
00003	Ø	Ø	Ø	Ø	Ø	Ø	1	Ø	00013	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø
00004	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	00014	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø
00005	Ø	Ø	1	1	Ø	Ø	Ø	Ø	00015	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø
00006	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	00016	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø
00007	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	00017	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø
00008	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	00018	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø
00009	Я	Я	Я	Я	Я	Я	Я	Я	00019	Я	1	Я	1	Я	1	Я	1
									A>_								
									MEM ***	* ***	***		12	2:00	:00		
<									绝对值	机床	参	数	ĺ	言息		(操作	乍) +

图 9.3.1

8.3.1 初始设定

首先确定系统参数中 No.960#3 PMN 为 0,确保 CNC 与 AMP 之间的通讯。 其次进行 I/O Link 轴的初始设定,在图 9.3.1 的画面下,进行下述参数的设定。 设定内容与普通的伺服电机类似,需要设定的内容包括如下表所示:

序号	设定内容	设定参数号	说明
1	电机型号	No.125	参阅电机代码表
2	CMR	No.32	2
3	每转一转的脉冲数分子	No.105*	≤ 32767
4	每转一转的脉冲数分母	No.106*	≤ 32767
5	移动方向	No.31	+111 或-111
6	参考计数器容量	No.180	电机旋转一圈的反馈脉冲数

表 9.3.1

说明:

a、关于 No.105、106 参数的设定。电机每转动一圈的脉冲数=电机每转动一圈的移动 量/检测单位。例如:假定检测单位为 1um,则由 10mm/1um=10000。

当由于减速比等原因造成非整数的情况下,可以使用参数 106 设定其分母。 如果电机每转的脉冲数分子大于 32767,则设定在参数 179 中。

又如: 电机轴为旋转轴, 减速比为 10: 1, 检测单位为 1/100 度时, 计算如下:

电机每转动一转,工作台旋转 360/10 度。	
因此,电机每转动一圈的脉冲为 360/10÷(1/100) =3600 脉冲	;
将其分子设定为 3600, 分母设定为 1。	

b. 电机旋转方向设定。

由编码器看沿顺时针方向旋转为正方向,设定值为111。 由编码器看沿逆时针方向旋转为负方向,设定值为-111。

c. 参考计数器容量作为回零时使用,如果使用绝对式脉冲编码器对其可以不作处理。 设定值为电机旋转一转的位置脉冲数。

上述设定完成后,设定电机初始化设定位为0进行初始化:No.12#1=0。此时与普通伺服类似,同样出现0号报警,提示关机。关机开机后,如果初始化完成,则No.12#1=1。

说明:关于βi电机(β12/2000is 除外,详见附录)的电机代码,参见系统参数设定中的电机代码。其他的电机代码与普通伺服电机代码一致,请查阅前面章节。

8.3.2 关于使用绝对式脉冲编码器的参数设定

在 I/O Link 轴的使用中,为了方便操作,通常可以选用绝对脉冲编码器,这样可以避免 每次开机的回零操作,从而减少梯形图的处理量。设定方法如下:

设定参数 No.11#7 (APCX) =1,表示绝对式脉冲编码器的检测器为通电状态。其次, 设定 No.11#0 (ABSX),该参数的含义为绝对式位置检测器和机床的位置是否对应,设定为 1,表示其对应关系已经建立。

参考点的建立过程与普通伺服轴带绝对式位置检测器的参考点设定过程一样。参见相 关章节。

在完成了地址设定以及上述的初始化设定后,I/O Link 轴已经被成功驱动。如果没有报警信息,则可进行下一步的功能设定,完成 I/O Link 轴的运动控制。如果发生报警,请参见报警的判断及解除。

8.3.3 相关参数说明

其他参数设定包括坐标系行程极限、进给速度、加/减速控制、输入/输出信号相关以及 伺服相关参数的设定。这些参数的设定以及含义详细附注。

8.4 梯形图编制

8.4.1 信号说明

对 FANUC I/O Link 轴控制接口方面,通常有两种接口形式:外围设备控制接口和直接 命令接口。在上述两种接口形式下,对 I/O Link 的信号分配是不同的。这两种接口形式的转 换是通过信号 Yy+1#5 (DRC)的设定完成的。信号(功能)列表:

4日	信早夕称	符号	地址			
511.	旧与石小	7 7	外围设备	直接命令		
1	准备结束信号	MA	Xx-	-2#7		
1	伺服准备就绪信号	SA	Xx-	-1 # 6		
	急停信号	*ESP	Yy-	-1#1		
2	外部复位信号	ERS	Yy⊣	-1#0		
	复位中信号	RST	Xx-	-2#1		
	报警信号	AL	Xx-	-2#6		
3	绝对脉冲编码器电池报 警信号	APBAL	Xx+7#1	Xx + 3 # 1		
4	模式选择信号	MD4,MD2,MD1	Yy+0#0	~Yy+0#2		
5	进给方向信号	+X, -X	Yy+0#4	, Yy+0#5		
	剩余移动量 范围内信号	DEN2	Xx-	-0 # 0		
	分配脉冲信号	IPLX	Xx+	-0 # 1		
	加/减速脉冲信号	SUPX	Xx-	-0#2		
	到位信号	INPX	Xx-	-0#3		
6	伺服位置偏差监视信号	SVERX	Xx+7#6	Xx+3#6		
	轴移动中信号	MVX	Xx+7#2	Xx+3#2		
	移动方向信号	MVDX	Xx + 7 # 0	$X_{X} + 3 # 0$		
	区信号	PSG1, PSG2	$X_{X}+7\#3, \#4$	Xx+3#3, #4		
	速度控制模式中信号	TRQM	Xx-	-2#2		
	功能有效信号	OPTENB	Xx-	-1 # 3		
	进给速度倍率信号	*OV1-*OV8	Yy+7#0~#3	Yy+2#0~#3		
7	手动快速移动选择信号	RT	Yy+7#7	Yy+2#7		
/	快速移动倍率信号	ROV1, ROV2	Yy+7#4, #5	Yy+2#4, #5		
	增量进给信号	MP1, MP2	Yy+7#4, #5			
8	联锁信号	*ILK	Yy+1#3			
9	参考点返回结束信号	ZPX	Xx-	-2#0		
	参考点建立信号	ZRFX	Xx-	-1#2		
	自动运转启动信号	ST	Yy⊣	-0#7		
10	自动运转启动中信号	STL	Xx-	-1 # 5		
10	自动运转中信号	OP	Xx-	-1#7		
	空运行信号	DRN	Yy+7#6	Yy+2#6		
11	松开指令信号	UCPC2	Xx+1#4			

	夹紧/松开状态输出信 号	UCPS2	Yy+0#6		
12	伺服断开信号	SVFX	Yy+	-1#2	
	动作结束信号	OPC1,OPC2, OPC3,OPC4	Xx+0#4~#7		
	功能代码	CMD CODEP	$Yy+2#4 \sim #7$		
	指令数据1	CMD DATA1	$Yy+2\#0 \sim \#3$		
	指令数据2	CMD DATA2	Yy+3~Yy+6		
13	响应数据	ANS DATAP	Xx+3~Xx+6		
	响应数据内容确认信号	DSP1,DSP2	$Xx+2#4 \sim #5$		
	响应数据写入结束信号	ABSWT	Xx+1#0		
	响应数据读取结束信号	ABSRD	Yy+1#4		
	报警输出指令信号	DSAL	Yy+0#3		
	报警输出状态确认信号	DSALO	Xx+2#3		
	急停信号	*ESP	直接	 行输入	
	超程信号	*-OT, *+OT	直接	 行输入	
14	高速联锁信号	*RILK	直接	 行输入	
	参考点返回用减速信号	*DEC	直接输入		
	跳转信号	HDI	直接	 {输入	

表 9.4.1 信号功能说明

8.4.2 外围设备控制接口(DRC=0)

该控制接口具有适用于控制机床外围设备等的指令,利用一个指令可以使其进行包括 轴的夹紧、松开在内的一系列定位动作。在设置功能代码、指令数据1、指令数据2之后, 接通/切断接口区的自动运转启动信号(ST),启动指令命令;另外,也可以根据指令命令使 用进给轴方向选择信号(+X、-X)。

信号区的使用情况: Yy+0, Yy+1, Yy+7和 Xx+0, Xx+1, Xx+2, Xx+7。对信 号区的内容进行接通/切断或者读入该信号,可以控制该放大器模块。

另外, Yy+2 至 Yy+6 被称作指令命令区, 对 Yy+2 可以分配功能代码和指令数据 1, 对 Yy+3 至 Yy+6 分配指令数据 2。

关于其信号的详细说明请参见梯形图中的注释。

8.4.3 直接命令接口(DRC=1)

该接口的控制方法不像控制外围设备那样利用一个指令进行多个动作,该接口的控制基本上利用一个指令可以进行1个定位动作。但是,除了定位指令以外,还具有很多其他类型的操作,比如:等候指令、参数的读写、诊断数据的读写等。

在该接口情况下,信号区使用 Yy+0 至 Yy+3、Xx+0 至 Xx+3。而指令命令区使用 Yy+4 至 Yy+15。

8.4.4 接口的切换

通常的情况下,在系统运转的过程中,"外围设备控制"接口和"直接命令"接口不会 进行切换,但是如果需要进行切换,可以通过"DRC"信号进行切换。

切换的时候,请在复位状态下进行"DRC"信号的切换。一旦切换后,所对应的信号含 义将改变,因此,在指令的中途或者轴的移动中切换接口时,有可能会引起想象不到的动作, 这一点请予以注意。

在切换"DRC"信号时,请在"DRCO"信号跟随切换后,等待1个扫描周期以上的时间再发出指令。另外,在"DRCO"切换前,如果再次翻转"DRC"信号时,将不能与伺服放大器模块进行正确的数据通信。

8.4.5 外围设备控制接口的功能说明

通常,由于需要对外围设备的一系列动作进行控制,因此采用外围设备控制接口进行控制比较方便。伺服放大器模块根据执行命令的进度情况返送动作结束信号(OPC1、OPC2、OPC3、OPC4)。含义如下为,OPC1:通知主机已经接收到功能代码。同时输出松开指令;OPC2:通知主机已经接收到松开状态输出信号;OPC3:通知主机移动已经结束。同时发出夹紧指令;OPC4:通知主机已经接收到夹紧状态输出信号,结束了功能代码的执行。在接收到 OPC4 之前不能设置下一个指令命令。

另外,当不使用夹紧/松开时,不能由伺服放大器模件输出 OPC2、OPC3。 对于 I/O Link 轴的运动控制采用外围设备控制接口,详细的接口情况参考如下:

图 9.4.1 外围设备控制接口(DO)

8.4.6 外围设备控制命令的形式

首先确定地址分配,比如由 Y50 开始作为 I/O Link 轴 DO 的起始地址,X50 为 DI 的起 始地址。因此,对于上述图 4.1 中的接口中,Y52 成为处理各种状态以及指令的关键。 指令命令的一般形式如下(系统->伺服放大器模块):

图 9.4.3 指令命令接口

8.4.7 外围设备控制的控制步骤

系统通过 PMC 对功能代码进行设置,同时将指令数据 1、2 进行赋值,然后,通过接

通/切断接口区的自动运行启动信号(ST),启动指令命令。但是手动方式下除外,通过+X、 --X启动指令。功能代码如下表所示:

	功能代码	指令数据 1 4Bit	指令数据 2 4Byte	模式	启动信号	备注
0:	JOG 运转			JOG	+X/-X	注释1
2:	2: ATC/转台控	1: 自动运转(快捷) 2: 自动运转(正向) 3: 自动运转(负向)	转台/料盘号	AUTO	ST	在参数中设定 ATC 每转 动一圈的移动量和转台/
	御」	4: 旋转1螺距 5: 连续分度 注释2		JOG	+X/-X	科益致。 注释 3、注释 4、注释 8
3:	点定位	进给速度代码 1~7 15:快速移动	点号 1~12	AUTO	ST	注释 5、注释 6、注释 7、 注释 8
	会去去近回	参考点号 1:第1参考点 2:第2参考点 3:第3参考点		N OC	ST	
4:	<u> </u>	息返回 15:参考点设定 注释 9、注释 10	106	+X/-X		
		15:参考点外部设定 注释 11			ST	
5: (绬	定位 (対指定)	进给速度代码 1~7 15:快速移动	工件坐标值	AUTO	ST	注释 6
6: (增	定位 量指定)	进给速度代码 1~7 15:快速移动	移动量	AUTO	ST	注释 6

7: 速度控制	0: 启动或变速指令 1: 停止指令	速度指令值	AUTO	ST	注释 12
8: 定位	BIT3: 0(绝对 指定) BIT0~2:进给速度代码 1~7	工件坐标值	AUTO	sт	注释 6、注释 13、注释
(用于跳转功能)	BIT3:1(増量 指定) BIT0~2:进给速度代码1~7	移动量	AUTO	51	14
10: 坐标系设定	1: 设定坐标系 2: 设定料盘号 3: 设定点号	坐标值 料盘号 点号	AUTO	ST	与编号相对应的坐标处 于当前位置。
12:参数重写	参数型 1: 字节型 2: 字型 3: 双字型(第1次) 4: 双字型(第2次)	参数号和 参数值		ST	
14: 点数据外部 设定	点号 1~12	点数据	JOG	ST	在与点号相对应的参数 中输入数据。
15: 基于示教的 数据设定		点号 1~12	JOG	ST	在与点号相对应的参数 中输入坐标值。

表 9.4.4 功能代码及指令数据

根据上表中的功能代码及指令数据进行设定。例如: Y52 赋值 49,转换为二进制则 Y52=0011 0001。

a、与 Yy+2 功能代码以及指令数据对应:功能代码为 0011,即 3,通过查询可知为点 定位功能。

b、指令数据1为进给速度代码,该例中指定为1,则选择进给速度1。

c、Y53-Y56 中数据为定位点的位置值。

通过上述的设定,即可完成对于 I/O Link 轴的控制,实现其外部动作。

8.5 I/O Link 轴动作实现范例

下面,将对常见的利用 I/O Link 轴实现外部机械动作的过程做简单介绍,配合梯形图的 解释以便阅读。主要包括以下 2 方面内容:

1)、B代码的处理。功能要求:点定位与速度控制。

2)、刀库换刀处理。功能要求:分度功能与定位。

范例1 利用B代码控制移动距离(T系列)

动作过程:例如,执行 B100.则按照增量进行移动 100mm 的距离;另外,还包括手动移动该轴时的控制过程。

参数设定:

系统侧:

参数号	含义	备注
8132 # 2	是否使用第二辅助功能	1: 使用
3033	B代码的允许位数	范围: 1-8。
3450#0	第二辅助功能指令包含小数点 及负值时,指令是否有效	1: 有效

I/O Link 轴:

参数号	含义	备注
000 # 1	直线/旋转轴设定	0: 直线轴
001 # 1	不进行参数点设定时	0:报警
003 # 1	夹紧/松开的使用	1: 不使用
003 # 2	夹紧/松开状态的检查	1: 不检查
011 # 2	带档块的参考点返回有效否	0: 无效
044-050	进给速度 1-7	按照正常进给速度设定
040	快速进给移动速度	按照正常快速进给速度设定

梯形图实现:

说明:

在 I/O Link 轴的信号中,关于方式选择的 MD1、MD2、MD4 三个信号可以与普通的方式选择共用,但是在 I/O Link 轴的方式只包含有自动、手动和手轮方式,其中手轮方式必须 在选配了 I/O Link 轴手轮功能后才能生效。

以上的梯图作为 I/O Link 轴生效的基础条件和前提。下面的例子中就不再多做介绍。

范例2 利用I/O Link轴进行刀库控制

工作原理:利用I/O Link轴实现ATC或者转台控制,原理是利用I/O Link轴的分度功能,进行刀具定位,完成刀库的换刀控制。

通过I/O Link轴的ATC/转台方式,还可以完成就近换刀的功能。 时序图与控制框图如下:

图4.4 刀库控制时序图

I/O Link轴侧参数设定如下:

参数	含义	设定值参考
000 # 1	旋转轴与直线轴	1: 旋转轴
000 # 7	旋转轴滚动翻滚功能有效否	1: 有效
003 # 1	夹紧/松开的使用	0: 使用
003 # 2	夹紧/松开状态的检查	0:检查
40	运行速度(AUTO方式下)	设定换刀速度
68	分度转盘数	按照机械实际结构设定
141	旋转轴每转的移动量	36000

梯形图如下:

8.6 附录

附录1	参数列表
-----	------

No.	内容		
000	控制轴相关参数		
	#1 ROTX : 直线轴(0) / 旋转轴(1)		
	#2 RAB2X : 旋转轴绝对指令的旋转方向符号指定无效(0) / 有效(1)		
	#6 RABX : 旋转轴绝对指令的旋转方向,		
	一次旋转以内的快捷方向(0) / 指令符号方向(1)		
	#7 ROAX : 旋转轴的滚动翻转功能无效(0) / 有效(1)		
001	坐标系行程极限相关参数		
	#1 ZRTN : 不进行参考点设定时,报警(0) / 不报警(1)		
	#3 SSL1 : 存储行程极限1无效(0) / 有效(1)		
	#4 N405 : 不能正确返回参考点时		
	伺服报警 No.405 报警(0) / 不报警(1)		
002	加/减速控制相关参数		
	#0 RPDE :快速移动的加/减速类型,直线型或钟型(0)/指数函数型(1)		
	#1 JOGE : JOG 进给或切削进给的加/减速类型,		
	直线型或钟型(0) / 指数函数型(1)		
	#6 RVF2 : 快速移动倍率的4级速度指定,		
	100%、50%、25%、F0(0) / 100%、F1、F2、F0(1)		
003	输入输出信号相关参数		
	#1 NCLP : 夹紧 / 松开的使用(0) / 不使用(1)		
	#2 IGCP : 夹紧 / 松开状态的检查(0) / 不检查(1)		
	#7 STON : ST 信号的检测下降(0) / 上升(1)		
004	输入/输出信号相关参数		
	#2 ZRNO : 输入参考点建立信号无效(0) / 有效(1)		
011	伺服相关参数		
	#0 ABSX : 绝对位置检测器的原点未建立(0) / 已建立(1)		
	#1 SZRN :标度(scale)返回无效(0)/有效(1)		
	#2 DZRN :带挡块的参考点返回无效(0) / 有效(1)		
	#6 MVZPFR : 不考虑更新旋转轴原点位置的尾数(0) / 考虑更新旋转轴原点位置		
	的尾数 (1)		
	#7 APCX : 不带绝对位置检测器(0) / 带有绝对位置检测器(1)		
012	伺服相关参数		
	#1 DGPR : 进行电机的自动设定(0) / 不进行电机的自动设定(1)		

No.	内容
031	电机旋转方向(DIRCTL)
032	指令乘数(CMR)
040	快速移动速度
041	JOG 进给速度
043	速度指令的上限值
044	对进给速度代码1的指令速度
045	对进给速度代码 2 的指令速度
046	对进给速度代码 3 的指令速度
047	对进给速度代码 4 的指令速度
048	对进给速度代码 5 的指令速度
049	对进给速度代码 6 的指令速度
050	对进给速度代码7的指令速度
054	返回参考点时的 FL 速度
055	快速移动直线型 / 钟型 T1 / 指数函数型加/减速时间常数
056	快速移动钟型 T2 加/减速时间常数
057	JOG 或切削进给直线型 / 钟型 T1 / 指数函数型加/减速时间常数
058	JOG 或切削进给钟型 T2 加/减速时间常数
059	JOG 或切削进给指数函数型加/减速的 FL 速度
060	快速移动指数函数型加/减速的 FL 速度
061	快速移动倍率的 F0 速度
066	快速移动倍率的 F1 速度
067	快速移动倍率的 F2 速度
068	料盘 / 转台号数
100	负载惯量比(LDINT)
105	电机每转动一圈的脉冲数的分子(SDMR1)
106	电机每转动一圈的脉冲数的分母(SDMR2)
107	位置环路増益(LPGINX)
110	停止时的位置偏差极限值
111	到位宽度
125	电机型式号
137	切削进给时的到位宽度
141	旋转轴每转动一圈的移动量
142	存储行程极限1的+(正)方向机床坐标值
143	存储行程极限1的一(负)方向机床坐标值
179	电机每转动一圈的脉冲数的分子(SDMR1、32768以上)
180	参考计数器的容量
181	栅格移动量
182	移动中的位置偏差极限值

说明:

- 在上述参数列表中未注明含义的参数,有时会在内部变量中使用,所以,请勿改变 其设定值。
- 2、在运转当中时,请勿对参数进行变更。

附录2 关于程序与设定的报警信息

报警号	内容	对策	
000	进行了需要断开电源的参数设定。	请暂时断开电源。	
011	进给速度零(指令速度)	请确认功能代码指令速度的参数。	
013	进给速度零(最大进给速度)	请确认速度指令上限值的参数No.0 43。	
070	登录了超过32个程序段的用于缓冲 运行的程序段。	请将登录程序段的数量减少到32个 程序段以下。	
090	不能正常执行参考点的设定。	在JOG方式下以使伺服位置偏差值 至参考点返回方向的速度超过128 的速度运行机床之后,重新指定参考 点的设定。	
093	(1)由于第1-3高速参考点返回时 参考点尚未建立而不能执行。	(l) 请进行参考点设定。	
	(2)不使用绝对脉冲编码器,而指定了 参考点外部设定。	(2) 请使用绝对脉冲编码器。	
224	参考点尚未建立。唯在参数001的 ZRTN=0时才进行本报警的检 测。	请进行参考点设定。	
250	指令数据1或者指令命令非法	请确认功能代码指令的输入数据1的 指定值。	
251	指令数据2非法	请确认功能代码指令的指令数据2的 指定值。	
254	功能代码或模式非法	请确认功能代码指令的功能代码的指 定值。请确认模式。	
255	由于启动时模式不同或者正在执行程 序段而不能启动。	请确认模式。请确认是否正在执行程 序段。	
290	正在执行程序段时切换了接口切换信 号(DRC)。	请在程序段停止后进行切换。	
291	在基于外部脉冲的轴移动中,速度超 过了上限值。唯在参数001的EP EXA=1时才进行本报警的检测。	请确认外部脉冲的指令速度。请确认 外部脉冲的倍率(参数062、06 3)。	

292	检测出了保持型存储器的校验和错 误。	参数会被清除,请重新进行设定。即 使进行上述操作之后仍然不能解除报 警时,请更换单元。
293	C P U 内置 F R O M 上的软件版本与 E P R O M 上的软件版本是同一版 本。	请拆下EPROM。
294	检测出了EPROM的CRC检测报 警。	请拆下EPROM。

附录3 β12/2000is 电机参数

β 12/2000is 电机在初始化当中,不能自动设 定完成。需要手动输入电机参数,参数如下表示。

参数号	代码	设定值
70	PK1	320
71	PK2	-1958
72	PK3	-1246
73	PK1V	225
74	PK2V	-2005
75	PK4V	-8235
76	PPMAX	21
77	PDDP	1894
78	PVPA	-3884
79	PALPH	-4400
80	TQLIM	7282
81	POVC1	32284

参数号	代码	设定值
82	POVC2	6045
83	POVCLMT	18045
84	AALPH	8192
85	DBLIM	0
86	MGSTCM	1
87	DETQLM	3940
88	NINTCT	1350
89	MFWKCE	4000
90	MFWKBL	280
101	PK2VAUX	-10
112	TRQCST	315
115	MDLCST	630

附录4 Power Mate CNC管理器

功能

0i-C Series

4 个从控装置显示功能

•通过将参数SLV(No.0960#0)设 定为"1",将画面进行4分割,可以 始终显示一个从控装置。带有 显示多个从控装置(最多4个)。 参数SLV(No.0960#0),选择Power 作切换要激活的从控装置。 Mate CNC 管理器时的画面

- 0:显示一个从控装置。
- 1: 将画面进行4 分割,显示多个 从控装置(最多4个)。

0i-D Series

•没有参数SLV(No.0960#0)。 多个从控装置时,通过软键操

第九节: 以太网和数据服务器

FANUC 0i 系列系统常见的以太网硬件设备主要有以下两种:快速以太网板(Fast Ethernet Board)和数据服务器板(Fast Data Server Board),相关功能叫做以太网功能(Ethernet Function)和数据服务器功能(Date Server Function)。现 0I-MD 和 0I-TD 系统都标配有内嵌式以太网口和 PCMCIA 网卡,而 0I-Mate MD 和 0I-Mate TD 只标配 PCMCIA 网卡,PCMCIA 网卡和内嵌式以太网相比,功能接近,只是不支持 FANUC 程序传输软件。下面分别加以比较说明。

9.1 内嵌式以太网

FANUC 0i-D 系列中的 0i-MD/0i-TD 系统都标准装配有支持 100Mbps 的内嵌式以太 网。将 CNC 与电脑连接起来,即可进 NC 程序的传输、机械的控制和运行状态的监视、机械的调整和维护。其基本功能包括:

- 基于FTP 传输功能的NC 程序的传输可通过CNC 画面的操作来传输NC 程序。电脑 侧使用FTP 服务器 软件,所以,可以与Windows 环境以外的主机一起传输NC 程 序。
- 基于FOCAS2/Ethernet 的机械的控制和监视可利用i CELL 和CIMPLICITY,创 建进行机械的控制和监视的系统。此外,也可以直接使用FOCAS2/Ethernet 功能, 创建独特的应用软件。此外,也可通过CNC 主导信息通知功能,利用NC 程序、 或者梯图程序发出的指令,从CNC 自发地向电脑的应用程序通知信息(CNC/PMC 数据)。
- 可以在线进行基于FANUC LADDER-III以及SERVO GUIDE 的机械的调整和维护、 梯图程序的维护和伺服电机的调整。

9.2 以太网和数据服务器软硬件的比较

9.2.1 快速以太网板和快速数据服务器板

无论快速以太网板(A02B-0309-J299)还是快速数据服务器板(A02B-0309-J146),都可以认为是 FANUC 提供的可直接连接以太网的硬件接口,所谓的快速是针对以太网传输速度而言,理论上的传输速率可以达到 100 Mbps。

快速以太网板和快速数据服务器板使用不同的软件可以实现各自不同的功能。尽管快速 以太网板和快速数据服务器板的 PCB 板板号不同,但从硬件结构上来看,他们的主要芯片 都是一样的,只是快速数据服务器板比快速以太网板多了一个 CF 卡(Compact Flash Card) 插槽。另外从功能上看,以太网功能也可以在快速数据服务器板上实现。或者说快速数据服 务器板在硬件上已经完全包含了快速以太网板的功能,但是必须在订货的时候选择相应的以 太网功能(A02B-0310-S707)才可以使用。

9.2.2 以太网功能和数据服务器功能

前面说的快速以太网板和快速数据服务器板是两种不同的硬件,那么相对于这两种硬件,FANUC分别提供了两种不同的软件功能,分别为:以太网功能(A02B-0310-S707)和数据服务器功能(A02B-0310-S737)。

所谓功能,可以简单的理解为软件,以方便和前面所说的硬件加以区别。FANUC的软件和硬件都是有固定的匹配关系的,对于以太网的相关功能来说,快速以太网板只能选择以太网功能;而快速数据服务器板则比较灵活,可以选择以太网功能或数据服务器功能,或者两者皆选。

9.3 以太网功能

以太网功能全称是 FOCAS2 / Ethernet Function,其中 FOCAS 是 FANUC Open CNC API Specifications 的所写,后面的 2 是版本号。目前通用的是第 2 版,第 1 版适用于早期的系统,对于 0i 系统两个版本没有什么太大的区别。FANUC 以太网相关的软件功能,都是这个平台上完成的。

9.3.1 以太网功能及其相关软件

以太网功能主要包含:NC数据传送、远程控制、以太网 DNC 加工等。但是前面说过 了,快速以太网板仅仅是一个硬件接口,联机通讯的时候还需要专用的 FANUC 软件,也就 是说仅仅使用以太网硬件设备是无法完成诸如程序传输等工作的。

FANUC 系统使用的以太网软件从来源上分主要有以下两种:

- 直接购买 FANUC 提供的相关软件,如:基本操作包 1 (FANUC Basic Operation Package 1 / A02B-0207-K752)、远程诊断包 (Machine Remote Diagnose Package / A08B-9210-J515)等,详细内容可以参考订货清单;
- 使用 Microsoft Visual Basic 或者 Visual C++, 配合 FANUC 提供的 FOCAS2 (A02B-0207-K737)应用程序接口(API)进行自主编程。最新的产品已经支持 dot net 技术。

9.3.2 以太网功能在 CNC 上的设定

FANUC 的以太网功能主要通过 TCP/IP 协议实现,使用的时候在 CNC 系统上只需设定 CNC 的 IP、TCP 和 UDP 端口等信息即可。具体操作方法如下:

按【系统】键,再按扩展键若干次,按【内藏口】软键进入以太网参数画面:

公共:	以太网	(内嵌)	
墨本			
MAC 地址		00E0E42	00338
IP 地址		<mark>192. 168</mark>	. 1. 1
子网掩码		255. 255	. 255. 0
路由器地址			
设备有效	丙]置板	1⁄2
A>_			
MDI **** ***	***	15:52:52	2
内藏口 PCMCIA	选择板		(操作) +
↓			

进入以太网设定画面后,再按【操作】软键

按【内嵌/PCMCIA】软键,选择内置板(内嵌网口),再按【再启动】、【执行】软键。 然后,然后按软键【公共】,如上图所示。可根据实际情况设定 CNC 的 IP 地址,或使用推荐值 192.168.1.1。按软键【FOCAS2】,进入以下画面:

FOCAS2/以太网	Ⅰ. 设定[内嵌]	l
-基本		
口编号(TCP)	Γ	8193
口编号 (UDP)		8192
时间间隔	, L	10
H 0 (P) (P) (P)		10
设备有效	内置板	1/1
0	1 0 077	-
MDI **** *** ***	15:59:20	1
公世 EDCAS2 ETP	1 10	最作りまし
传送	- J:	* 1 - 1 - 1

设定 TCP 和 UDP 端口,以及时间间隔,通常 TCP 端口为 8193, UDP 端口为 8192,时间间隔根据实际需要设定,一般来说设定 10 秒钟即可。

完成了以上设定后,系统侧的设定就完成了。如需要使用远程诊断功能,继续翻页并根据系统提示设定即可。

9.3.3 以太网功能应用举例

举个例子来说,假设我们希望使用以太网连接电脑和 CNC 进行远程控制,那么对于电脑来说必须要有一个以太网卡,对于 CNC 则需要一个快速以太网板或者其他以太网接口并选择以太网功能;另外,在电脑上还需要有相应的控制软件,比如基本操作包1。这样,我们就可以坐在办公室,通过以太网来控制车间中的机床了。

无论是使用电脑进行程序传输还是远程控制或者其他基于以太网的功能, CNC 硬件、 CNC 功能、电脑上的软件这些条件缺一不可。对于一般的机床厂家,可以选择上面提到的 第一种方案,从 FANUC 或者第三方厂家直接购买基于以太网软件。对于那些有技术实力的 厂家,可以使用 FOCAS2 来编写适合自己机床的软件,以实现软件更加专业化、更加个性 化的目的。

9.4 数据服务器功能

FANUC系统的数据服务器功能,主要用于加工程序存储空间的扩展以及使用数据服务器方式的 DNC 加工。数据服务器的数据传输基于快速以太网,使用 FTP 文件传输协议。简单的说,数据服务器功能是建立在快速以太网板的基础上,可以用硬盘或 CF 存储卡完成 DNC 加工。

数据服务器方式进行 DNC 加工比普通 DNC 加工更加可靠,也更加稳定。另外,因为数据服务器使用了 FTP 文件传输协议,所以电脑上可以完全脱离 FANUC 的软件进行各种传输工作,更具灵活性。目前网络上的 FTP 相关软件很多,使用非常方便。

9.4.1 实现数据服务器功能的基本工作模式

使用数据服务器功能进行 DNC 加工必须使用快速数据服务器板才可以实现,数据服务器共有两种工作模式:

1. 存储(STORAGE)模式

此种模式相当于用快速数据服务器板本身作为数据服务器的存储介质。DNC 加工时,程序从板载 CF 卡输出到 CNC;而 CF 卡上的加工程序则事先通过外部电脑传入,传输的时候同样使用 FTP 协议与电脑建立连接。数据流向如图:

使用存储模式时,必须使用板载 CF 存储卡,并将 20#参数设为 5。在此模式下, DNC 加工的时候程序直接来自 CF 卡,不需要借助外部设备,工作更加稳定。

2. FTP 模式

此种模式相当于用外部电脑作为数据服务器的存储介质。DNC 加工时,程序

直接从电脑输出到 CNC,数据流向如图:

使用 FTP 模式时,也要将 20#参数设为 5,但不需要使用额外的板载 CF 卡。 但由于 DNC 加工程序是通过 FTP 协议直接从电脑上读取,所以需要在电脑上安装 相应的 FTP 服务器控制软件(如: IIS、Serv-U等)。

这两种方式可以通过 DS 方式画面进行切换。具体操作如下:

按【选择板】键,扩展找到【DS方式】软键,进入DS方式设定画面:

再按【操作】软键进入下图所示画面,选择存储模式或者 FTP 模式。

数据服务器方式	
一设定 方式 协议模式 通道数	1
	1⁄2
MDI **** *** 16:28:20	
「存储方」 「FTP方」 式 」	

9.4.2 CNC 和电脑的连接

CNC 和电脑的连接方式主要有两种:一种是 CNC 在 FTP 模式下,使用电脑作为 FTP 传输的服务器,用数据服务器功能进行 DNC 加工;另外一种则是 CNC 在存储模式下,使用 CNC 作为 FTP 传输的服务器,通过电脑向 CF 卡上传输加工程序。无论使用哪种连接都 会涉及到 FTP 传输协议,所以先简要概括一下 FTP 协议相关内容。

9.4.3 关于 FTP 文件传输协议

FTP 协议即文件传输协议(File Transfer Protocol),它是一个标准协议,FTP 协议也是应用 TCP/IP 协议的应用协议标准,属于网络协议组的应用层。它是在计算机和网络之间交换文件的最简单的方法。

FTP 协议采用客户机/服务器(Server/Client)工作方式,客户机和服务器之间通过以太 网连接,其默认控制端口是 21。一个服务器能同时连接的最大客户端数量,取决于服务器 的性能以及网络环境等,而且可以通过软件设置。服务器和客户机关系图如下:

如图,在 FTP 协议下,数据流是双向的,但指令流一般是单向的。也就是说我们可以通过

客户机向服务器发送指令,对服务器上的数据进行读写等操作;反之则不行,一般不通过服 务器对客户机发出指令。

9.4.4 使用电脑作为 FTP 传输的服务器端

这种传输方式通常用在 FTP 模式下使用。电脑作为 FTP 传输服务器,所以需要在电脑 上安装相应的 FTP 服务器软件,如 Windows 自带的 IIS 或者第三方的 Serv-U 等,后面会详 细说明。另外,在此模式下,CNC 是 FTP 传输的客户端,所有的操作都是在 CNC 上完成 的,所以还需要在 CNC 上设定客户端 IP (也就是 CNC)、FTP 服务器 IP (电脑)、FTP 服 务器端口号、连接用户名以及密码等,具体操作如下:

首先按照前文所述使用以太网的方法设定 CNC 的 IP, 假设我们设定为 192.168.1.1。因为现在的传输是通过快速数据服务板,使用 FTP 协议,所以无需设定 TCP 和 UDP 端口等,如果只选购了数据服务器功能而没有选择以太网功能,则没有设定 TCP 和 UDP 端口的画面。

接下来按【数据服务器】软键,可设定数据服务器的 IP、端口、用户名、密码等信息,因为现在使用电脑做服务器,那么这个 IP 就是电脑的 IP,这里假设电脑的 IP 是 192.168.1.2,端口 21。(总共可以输入三个主机的 IP 地址)

数据服务器:设定[板]	
- 连接1	
主机名(IP地址)	
192. 168. 1. 2	
端口号	21
用户名	
YUANDY	
密码	

	1⁄8
A>_	
编辑 **** *** *** 11:01:4	7
公共 FOCAS2 数据服 务器	(操作) +

设定完成以后,正常情况下就可以进行连接了。操作如下:

按【操作】键若干次,进入选择主机界面

再按【**选择主机】**软键

按【连接 1】,这时数据服务器板会根据以太网设定自动连接电脑主机,并列出程序目录。

主机文件目录的查看方式如下:

首先选择【EDIT】或者【RMT】方式,按 MDI 的【PROG】键

按【列表】、【操作】软键,进入设备选择界面,按【设备选择】

CNC			内置以		DTSVR	DTSVR	Ì
MEM	[]	[]	太网	ÌÌ		主机	ĺ

选择【DTSVR】或【DTSVR 主机】,分别查看数据服务器中 CF 卡的文件和电脑主机目录下的文件,下图为主机目录文件,可以对其中的文件进行读取和输出操作

😤 CNC Screen Disp	olay Function - 192.1	68.1.1:8193	
File View Option Help			
数据服务器主机义件	列表	01300	N00000
M198运行目录 DNC运行目录	1:		
主机连接	✓ Ⅰ: 主机1	登录程序	9
设备: DTSVR_HOS ALL-PROG.TXT 00100 00101 00111 00235 00501 01100 01253 01300	「 (当前目录:		 ⊽
くした。		A>_ RMT ***** **** 设备 文件 文件 选择 读取 輸出	11:24:31

9.4.5 使用 CNC 作为 FTP 传输的服务器端

这种传输方式通常在存储模式下使用。电脑向 CNC 传输程序往往通过以太网。此时需 要将 CNC 作为 FTP 传输的服务器,而电脑做客户端,所有传输操作均在电脑上完成。通常 CNC 作为服务器有最大连接数限制,一般快速数据服务器是 20 个。可在以太网参数设定画 面设定访问 CNC 系统 FTP 的用户名和密码。

操作方法和前文所述类似,先进入以太网参数(ETHPRM)画面,然后翻页到 FTP 服务器设定画面,如图:

数据服务器:设定[板]	
FTP服务器	
用户名	
YUANDY	
密码	

	7/ 8
0.2	
··/_	
编辑 **** *** *** 11:42:13	3
公共 FOCAS2 数据服	(操作) +

FANUC 的 CNC 系统的 FTP 服务只能工作在 21 端口,所以设置好用户名和密码就可以 使用了,通常情况下,用户名和密码都区分大小写,而且都不能为空。若 CNC 工作于服务 器方式,则通过电脑可以对 CNC 上的 CF 卡进行读、写、删除等操作,但是不能覆盖原有 文件。

数据服务器可以简单的理解为一块存储空间,对于 CNC 做服务器的方式(存储模式),这个存储空间就是数据服务器板上的 CF 卡,如果用电脑做服务器(FTP 模式),存储空间则为电脑的硬盘。

9.5 Windows XP下 FTP 服务的使用和设定

在 Windows XP 下使用 FTP 服务的方式很多,可以使用 Windows XP 自带的 IIS(Internet Information Server),也可以使用其他的第三方软件。不过有一点需要注意,Windows XP Home Edition也就是 XP 家庭版无法安装 IIS,只有专业版(Professional Edition)才可以使用。但是家庭版的 Windows XP 同样可以使用第三方的 FTP Server 软件。

9.5.1 使用 Windows XP 自带的 IIS

安装

前面说过了,要在 Windows XP 下使用 IIS,必须使用 Professional 版的 XP 系统,以 IIS v5.1 为例。在控制面板中打开"添加或删除程序"项目,再选择"添加/删除 Windows 组件",在弹出窗口中选中"Internet 信息服务 (IIS)"组件中的"文件传输协议 (FTP) 服务"子组件,如图:
ndows 組件 可以添加或冊除 Windo	ws XP 的组件。	8
2 - 0 - 112 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -		
要添加或删除某个组件	,请单击旁边的复选框。灰	色框表示只会安装该组件的
一部分。要查看组件内	容,请单击"详细信息"。	
组件(C):		1973 C (1995)
✓ ● Internet Explo	orer	0.0 MB
■ ¶lnternet 信息!	版务(115)	13.4 MB
MSN Explorer		0.0 MB
	25	0.0 MB 💌
Outlook Expres		
図Utlook Expres 描述: 包括 Web 5 Server Pa	和 FTP 支持,以及对 Fron ges 和数据库连接的支持。	tPage、亊务处理、Active
■ ■ Outlook Expres 描述: 包括 Web : Server Pa 所需磁盘空间:	和 FTP 支持,以及对 From ges 和数据库连接的支持。 56.7 MB	tPage、事务处理、Active
■ 副Outlook Expres 描述: 包括 Web Server Pa 所需磁盘空间: 可用磁盘空间:	和 FTP 支持,以及对 Fron ges 和数据库连接的支持。 56.7 MB 3604.4 MB	tPage、事务处理、Active 详细信息 @)

点击详细信息,可以查看 Internet 信息服务的子组件选中 FTP 文件传输(FTP)服务。

Internet 信息服务	+ (IIS)		1	×
要添加或删除某个组件 部分。要查看组件内容 Internet 信息服务(I	+,请单击旁边的复 5,请单击"详细信 IS)的子组件 (C):	选框。灰色框表 息"。	示只会安装该组件的-	-
☑ 籀 Internet 信息	服务管理单元		1.3 MB 🖌	~
🗌 🔤 SMTP Service			1.1 MB	
🗹 🔷 公用文件			1.0 MB	
🛛 🛃 万维网服务			2.3 MB	
☑ @文档			3.5 MB	
🗹 📮 文件传输协议(FTP)服务		0.1 MB	-
描述: 为创建用于上载	戡和下载文件的 FT	P 站点提供支持	1	
所需磁盘空间:	56.7 MB		详细信息(D)	
可用磁盘空间:	3604.4 MB	<u> </u>	-	-
		确定		

单击确定,根据提示安装。

设置

打开"控制面板 → 管理工具 → Internet 信息服务"。

🦉 Internet 信息服务			-ox
文件(E)操作(A)查看(V) 帮助	ታ(ዧ)		
	? ≞ ▶	I 11	
🗑 Internet 信息服务	名称	路径	状态
□ — 爲 TECH(本地计算机)		此视图中没有可显示的	的项目。

展开目录树,右键单击默认 FTP 站点,打开属性页面。单击"FTP 站点"选项卡, 在此页面设置端口号,通常默认端口是 21,不用修改,其他都可以使用默认值。

标识			
描述 @):	默认 FTP 站点		
IP 地址(L):	(全部未分配)		~
TCP 端口(I):	21		
连接			
○不受限制 (n)			
⑧限制为(M):	10 个	连接	
连接超时(C):	900 秒	,	
☑ 启用日志记录	(E)		
活动日志格式(<u>v</u>):		
W3C 扩展日志	文件格式	▼ [属性	ŧ@)
			当前会话(R)

除非有特殊要求,安全帐户选项卡页面不用修改。另外,此处的用户名是为了给 匿名访问 FTP 资源而建立的 Windows 系统帐户,不要随意修改。

如需要自定义登录 FTP 服务器的用户名和密码, 应该在"控制面板 → 用户帐户"

中添加。使用 IIS 做 FTP Server 时,能登录 Windows 的帐户都可以访问 FTP 资源。另外, IIS 还提供了匿名访问功能,登陆用户名为 Anonymous,密码为任意字符串,推荐使用。

」近叶匿名 选择匿名记	注接[U]] 问答源时使用的 Windows 用户帐户	•
用户名 (①):	IUSR_TECH	浏览 (3)
密码(E):	******	
	□只允许匿名连接(L) ☑ 允许 IIS 控制密码(W)	
TP 站点操作	作员	
仅将操作员	故限授予 FTP 站点的 Windows 用/	□帐户。
操作员 (T)	🜃 Administrators	添加(0)
		(冊)除(B)

IIS 默认的 FTP 根目录为 C:\Inetpub\FTProot\,如果需要修改,可以在主目录选项 卡中设定。本选项卡还可以设置用户对 FTP 站点的读写权限,如果希望在 CNC 上修 改 PC 中的加工程序,需要选中"写入"选项。

失认 FTP 站点 J	<u></u> 【世	?>
FTP 站点 安全帐/ 连接到资源时的内	 □ 消息 土日求 □ 容来源: ○ 此计算机上的目录 (0) ○ 另一台计算机上的共享 (L) 	
本地路径(0):	D:\ftproot	浏览 (8)
	 ☑ 读取 (월) ☑ 写入 (₩) ☑ 记录访问 (¥) 	
目录列表样式一		
(X) XINU (X)		
⊙ MS-DOS (S)		
	(确定 取消)	应用 (A) 【 帮助

9.5.2 使用 Serv-U

因为 IIS 对 FTP 服务的管理不是很方便,功能非常有限,而且 IIS 的漏洞很多,所以很 多人不喜欢使用。有很多第三方的软件也是很好用的,比如: Rhino Software 公司的 Serv-U 等。设置方式如下:

安装好软件以后,启动 Serv-U 主界面,将提示为文件服务器创建新的域

🕚 域向导 - 步骤 1 总步骤 3 🛛 🕅 🕅
欢迎使用 Serv─U 域向导。本向导将帮助您在文件服务器上创建域。
每个域名都是唯一的标识符,用于区分文件服务器上的其他域。
名称:
BEIJING-FANUC
域的说明中可以包含更多信息。说明为可选内容。 说明:
连接FANUC数据服务器
☑ 启用域
下一步〉〉 取消

指定一个域名(这个域名只是为了记忆方便,可以随意选择)及简单说明,点击下一步

 ● 域向导 - 步骤 3 总步骤 3
欢迎使用 Serv-V 域向导。本向导将帮助您在文件服务器上创建域。
IP 地址指定了一个地址,域应对该地址的请求连接进行监听。留空则表示应该 使用所有可用的 IP 地址。
IP 地址:
192.168.1.1 (留空则表示全部)
《上一步 完成 取消

选择一个 IP 地址,可以指定 CNC 的 IP,或者直接留空,留空表示使用任何可用 IP, 然后点击完成按钮,会出来一个对话框,提示创建新用户,此步是建立一个用于访问 FTP 服务器的用户名和密码

(1) 用	户肖导 - 步骤 1	总步囊 4			X
	欢迎使用 Serv—U 您的文件服务器。	用户帐户向导。	该向导帮助	动您快速创建新	所用户,以访问
客户端望 用户名:	尝试登录文件服务器	时 通过用户名标	示识其帐户。	•	
YUANDY	1				
				下一步>>	取消

点击下一步,会出现密码设定,用户名以及密码可以随便设定。设定好用户名/密码后, 点击下一步,需要指定一个工作目录,也就是使用 FTP 连接后看到的目录,这个目录可以 手动输入,也可以使用右面的【浏览】按钮进行浏览选择

()用	户向导 - 步骤 3 总步骤 4 🛛 🕅 🕅
	欢迎使用 Serv─U 用户帐户向导。该向导帮助您快速创建新用户,以访问 您的文件服务器。
根目录; 则其根	是用户成功登录文件服务器后所处的物理位置。如果将用户锁定于根目录, 目录的地址将被隐藏而只显示为 ′/′。
根目录	:
/D:/F/	ANUC 浏览
🛃 锁知	定用户至根目录
	《《上一步》 下一步>> 取消

最后,我们需要对这个目录进行权限设置,一般设为完全访问,也可根据实际需要选择

(1) 用	户肖导 - 步骤 4 急步骤 4 🛛 🕅 🕅
	欢迎使用 Serv-U 用户帐户向导。该向导帮助您快速创建新用户,以访问 您的文件服务器。
选择要: 访问使/	授予用户在其根目录的访问权限。只读访问允许用户浏览并下载文件。完全 用户能够完全掌控在其根目录内的文件和目录。 ~~
访问权 完全说	
只读说	方问
完全说	方问
	《 上一步 完成 取消

点击【完成】,完成 SERV-U 新域的创建,此服务器域就会自动正常运行。FTP 传输的 端口号在设定的时候已经被默认为 21,也可以根据实际情况进行设定。

9.6 CNC 系统和 PC 的连接调试步骤和技巧

CNC 系统和 PC 机联机调试的大致步骤如下:

9.6.1 在本地确认 FTP 服务器工作正常

如果 CNC 无法连上电脑,那么我们首先可以使用电脑自己连接自己,以此检查一下 FTP 服务器工作是否正常。检查的时候可以使用 IE 或者其他 FTP 连接工具(如: FlashFXP、CuteFTP 等第三方软件)。如果测试的时候没有联网,可能 Windows 不会分配指定的 IP,可以使用 localhost 或者 127.0.0.1 测试。以 IE 为例,建立 FTP 连接命令的标准格式为,ftp://user:password@host:port,比如用户名是 liwei,密码是 123,FTP 的端口号是 21,则在地址栏中输入FTP://liwei:123@192.168.1.3:21。如果使用匿名登陆进行本机测试,直接输入ftp://127.0.0.1即可(21 是 FTP 默认端口,可以省略)。若设置正确,则可正确显示 FTP 目录下的文件,如图:

如无法显示,请检查相关 FTP 服务器设置,核对用户名/密码等。

9.6.2 检查网络连接是否正常

因为快速数据服务器板支持百兆速度传输,所以 CNC 到 PC 之间的网线应该使用五类 双绞线,而且最好使用符合 TIA/EIA 568A 标准的排列方式,也就是通常所说的交叉线(反 线)。一般电子市场或者电脑城之类的地方都可以买到。连接前最好检查一下排列是否正确。 正线,即直通线,(标准 568B):两端线序一样,从左至右线序是:白橙,橙,白绿,蓝, 白蓝,绿,白棕,棕。反线,即交叉线,(568A):一端为正线的线序,另一端为从左至右: 白绿,绿,白橙,蓝,白蓝,橙,白棕,棕。

检查网络是否连通最简单的方法就是使用 Windows 自带的 ping 命令, 命令格式为: ping IP 地址。可以直接在开始菜单或者系统命令提示符窗口运行 ping 命令, 推荐后者。Ping 命 令 Windows 系统默认尝试连接 4 次。实际调试中可以加参数 "/t", 表示一直尝试连接, 直 到按 "Ctrl+C"终止程序。如果电脑到 CNC 的网络连接正常, ping 命令的显示如下:

命令提示符 - ping 192.168.1.1 /t
 C: \Documents and Settings \Administrator>ping 192.168.1.1 /t
 Pinging 192.168.1.1 with 32 bytes of data:
 Reply from 192.168.1.1: bytes=32 time<1ms TTL=255
 Reply from 192.168.1.1: bytes=32 time<1ms TTL=255
 Reply from 192.168.1.1: bytes=32 time<1ms TTL=255
 Reply from 192.168.1.1: bytes=32 time<1ms TTL=255
 Reply from 192.168.1.1: bytes=32 time<1ms TTL=255
 Reply from 192.168.1.1: bytes=32 time<1ms TTL=255
 Reply from 192.168.1.1: bytes=32 time<1ms TTL=255
 Reply from 192.168.1.1: bytes=32 time<1ms TTL=255
 Reply from 192.168.1.1: bytes=32 time<1ms TTL=255
 Reply from 192.168.1.1: bytes=32 time<1ms TTL=255
 Reply from 192.168.1.1: bytes=32 time<1ms TTL=255
 Reply from 192.168.1.1: bytes=32 time<1ms TTL=255

在 CNC 系统上同样可以使用 ping 命令,方法如下:

按 MDI 的【系统】键,扩展若干次,按【选择板】、再按扩展软键,进入画面

PING	通讯LS	任务状	DS方式	(操作)	+
	I状态	态			

再按【PING】、【操作】软键

PING	PING	PING	PING	PING	+
FTP1	FTP2	FTP3	取消	执行	

按【PING FTP1】,如果系统可以正常收到来自电脑的反馈信息,如下图,表明连接没有问题。

PING [板口]
- 连接状态确认
192. 168. 1. 2
收到应答
收到应合
PING 状态 1/ 2
A>_
_编辑 **** *** *** 10:47:43
PING PING PING PING +
FTP1 FTP2 FTP3 取消 执行

如果不能建立连接,请检查接线、电脑的网络设置、防火墙等因素。

9.6.3 确认 CNC 设置并联机调试

使用数据服务器功能 CNC 上需要设定的内容:

- 1. 20#参数设为5;
- 2. 在 DS 方式画面选择合适的工作模式;
- 3. CNC 以太网设定画面中设置好 IP、子网掩码;
- 4. 检查连接 FTP 相关的端口、用户名和密码,需要特别注意用户名和密码的大小写。 为了避免以上麻烦,推荐使用匿名连接;

其他操作系统的调试方法,如 Windows2000,没有本质上的区别,全部设置好以后应该 就可以正常使用了。

第十节 数据备份

10.1 概述

在机床所有参数调整完成后,需要对出厂参数等数据进行备份,并存档,最好是厂 里有一份存档,随机给用户一份(光盘),用于万一机床出故障时的数据恢复。

10.2 CNC 数据类型

CNC 中保存的数据类型和保存方式如下:

数据类型	保存在	来源	备注
CNC 参数	SRAM	机床厂家提供	必须保存
PMC 参数	SRAM	机床厂家提供	必须保存
梯形图程序	FROM	机床厂家提供	必须保存
螺距误差补偿	SRAM	机床厂家提供	必须保存
加工程序	SRAM	最终用户提供	根据需要保存
宏程序	SRAM	机床厂家提供	必须保存
宏编译程序	FROM	机床厂家提供	如果有保存
C 执行程序	FROM	机床厂家提供	如果有保存
系统文件	FROM	FANUC 提供	不需要保存

注: FANUC 系统文件不需要备份,也不能轻易删除,因为有些系统文件一旦删除了, 再原样恢复也会出系统报警而导致系统停机而不能使用,请一定小心,不要轻易删除系统文件。

10.3 操作步骤

建议使用存储卡进行数据备份,存储卡可以在市面上购买或者从我公司购买,一般使用 CF 卡+PCMCIA 适配器。如果在市面(电脑市场)购买,需要挑选质量好的卡和适配器,因为市面上很多卡在系统上不好使。

10.3.1 参数设定

参数号	设定值	说明
20	4	使用存储卡作为输入/输出设备

10.3.2 SRAM 数据备份

正确插上存储卡。

开机前按住显示器下面右边两个键(或者 MDI 的数字键 6 和 7),如下图:

(上述表示12个软件键的例子,对于7个软件键,也是按住最**人**两个键。直到下述 BOOT画面显示出来,再松开按键。)

SYSTEM MONITOR MAIN MENU
1. END
2. USER DATA LOADING
3. SYSTEM DATA LOADING
4. SYSTEM DATA CHECK
5. SYSTEM DATA DELETE
6. SYSTEM DATA SAVE
7. SRAM DATA UTILITY
8. MEMORY CARD FORMAT
* * * MESSAGE * * *
SELECT MENU AND HIT SELECT KEY。
ISELECTIEVES IF NO IF UP IFDOWN

- 1) 按下软键 "UP" 或 "DOWN", 把光标移动到 "7. SRAM DATA UNILITY"。
- 2) 按下"SELECT"键。显示 SRAM DATA UTILITY 画面。

/	SRAM DATA BACKUP
	SRAM BACKUP (CNC→MEMORY CARD) 2. RESTORE SRAM (MEMORY CARD →CNC) 3. AUTO BKUP RESTORE (F-ROM→ CNC) 4. END
	* * * MESSAGE * * *
	SELECT MENU AND HIT SELECT KEY.
	[SELECT] [YES] [NO] [UP] [DOWN]

3) 按下软键 "UP" 或 "DOWN", 进行功能的选择。

使用存储卡备份数据	: SRAM BACKUP
向 SRAM 恢复数据	: RESTORE SRAM
自动备份数据的恢复	: AUTO BKUP RESTORE

4) 按下软键 "SELECT"。

- 5) 按下软键"YES",执行数据的备份和恢复。
 - □ 执行 "SRAM BUCKUP"时,如果在存储卡上已经有了同名的文件,会询问 "OVER WRITE OK?",可以覆盖时,按下"YES"键继续操作。
- 6)执行结束后,显示"…COMPLETE.HIT SELECT KEY"信息。按下"SELECT"软键,返回主菜单。

10.3.3 系统数据的分别备份

上述 SRAM 数据备份后,还需要进入系统后,分别备份系统数据,如参数等。

1) 系统参数:

① 解除急停

③ 依		安下	「功能	论键	sy	STEM	软	:键	参数,出现参数画面。
参数									00000 N00000
设定 00000 00001 00002 00010 x Y 2 00020 00021	₽ SJZ ₽ RMV ₽ ₽ ₽ ₽ ₽ ₽ ₽ 0 UT	D D D D CHA	SEQ 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	<mark>8</mark> 8 8 8 8	INI 0 0 PEC 1 0 0	ISO 1 FCV 8 PRM 8 8	TUC Ø P2S 1 MIR Ø Ø	00022 INP CHANNEL/B.G. 00023 OUT CHANNEL/B.G. 00024 0
									A>S_0.10000
									MDI **** *** 22:50:27
									参数 诊断 系统 (操作) +

② 在机床操作面板上选择方式为 EDIT(编辑)

④ 依次按下软键【操作】、【文件输出】、【全部】、【执行】, CNC 参数被输出。

🚇 输出文件名为 "CNC-PARA.TXT"

 PMC 程序(梯形图)的保存 进入 PMC 画面以后,按软件键[I/O]如下:

PMC组 执行	<u></u> ***			00	0000	NØØ0	00
			PMC 数	:据输入/出			
	PMC	= PMC1					
	装置	= 存储卡	/ F	Lash Rom /	软躯 ノ 非	ŧŻ	
	功能 数据类型 文件号・	= 写 = 顺序程 =	✓ 读取 序	/ 比较/ 参数	╯删除 ╯	格式化	
	又件名	= PMC1_L	AD. 001				
	状态	正在检索文件名					
		正常结束					
				0.24			
				MDI ****	*** ***	10:11:54	
<	执行	列表	新建文件名	輸入方式			

按照上述每项设定,按【执行】,则 PMC 梯形图按照 "PMC1_LAD.001" 名称保存 到存储卡上。

3) PMC 参数保存

进入PMC 画面以后, 按软件键[I/O] 如下:

PMC = PHC1 装置 = 存储卡 / FLASH ROM / 软驱 功能 = 写 / 读取 / 比较 / 删除 数据类型 = 顺序程序 / 参数 文件号. = 文件名 = PHC1_PRM.000 状态 正在检索文件名 正常结束	
朱直 = 存储下 > FLHSH RUH > 扒躯 功能 = 写 > 读取 / 比较 / 删除 数据类型 = 顺序程序 / 参数 / ● 文件号· = PHC1_PRH. 000	. ++>
功能 = 写 / 读取 / 比较 / 删除 数据类型 = 顺序程序 / 参数 文件号. = 文件名 = PHC1_PRH.000 状态 正在检索文件名 正常结束	/ 具匕
文件号· = 文件名 = アHC1_PRM. 000	✓ 格式化
 状态 正在检索文件名 正常结束	
状态 正在检索文件名 正常结束	
正常结束	
0.2.0	
H)^	
MDI **** ***	10:12:45

按照上述每项设定,按[EXEC],则 PMC 参数按照 "PMC1_PRM.000" 名称保存到存储卡上。

4) 螺距误差补偿量的保存

1	依次按下功能键 SYSTEM 和软级	·	补 , 显示	示螺距误差补付	尝画面。
现在位	立 <u>置</u>	000	005 N	100000	2
X Y	^{绝对坐标} 0.000 0.000	F 运行时间	加工: 0H43M 循环[<mark>⊘</mark> мм∠мі 零件数 : 时间 өнөм :	20 25
Ζ	0.000		螺距误差补	偿	
600 617 690 622 694 621 640	模态 649 664 F4000.000M 680 669 H 698 615 D 650 640.1 T 667 625 S 697 6160 654 613.1	5. 303600 8 808080 8 8 808081 8 8 808082 8 8 808083 8 8 808083 8 8 808085 8 8 808087 8 8 808087 8 8 808087 8 8 808087 8 8 808089 8 8 808089 8 8 8080818 8 8 8080818 8 8	专: 数据 90911 9 90912 9 90913 9 90913 9 90915 9 90915 9 90915 9 90916 9 90918 9 90918 9 90919 9 90929 9 90921 9	号、数据 00022 0 00023 0 00024 0 00025 0 00026 0 00027 0 00028 0 00029 0 00029 0 00030 0 00031 0 00032 0	
SACT	8/分	A>_			
	绝对相对 综合 手轮	<u>编辑 **** **</u> 螺	* *** 18 补 伺服 设定 i	·38∶58 主轴 资定 ┃ (操作)┃ +	
2	依次按下 (操作) + 文件 輸出 輸出 輸出	- <u></u> 执行],输出螺	距误差补偿量	L 2 0
	📟 相山入口石八 FIICI	1.1/1			

5) 其他如:刀具补偿、用户宏程序(换刀用等),宏变量等也需要保存,操作步骤基本和上述相同,都是在编辑方式下,相应的画面下,按【操作】-【输出】-【执行】即可。

10.4 用存储卡进行 DNC 加工

- 1). 首先将 I/O CHANNEL 设为 4,参数 138#7 设为 1 (存储卡 DNC 加工有效)。
- 2). 将加工程序拷贝到存储卡中(可以一次拷贝多个程序)。
- 3). 选择【RMT】方式,程序画面,按右键扩展,找到【列表】,再按【操作】,进入以下菜单界面:

< ✓ F检索	┃ 文件 ┃ 读取	【文件名】 读取	〔文件 輸出	F删除		设备 选择	表示更 新	DNC 设定	DNC 解除		
------------	--------------	-------------	-----------	-----	--	----------	----------	-----------	-----------	--	--

按【设备选择】、选择【存储卡】,出现以下操作画面:

存1	储卡					C	1300	0 N0	000	20
D	NC 运行	目录	00100				登录程序			15
-		M CARD								
	~볌:	文件名			注释		容量(KBYTE)) 百新	क जि	
	0001	PMC1_LAD. 0	900	c –	11 1+)	129	2004/03/	28 09:03	
	0002	ALL-PROG. T	хт	C)	12	2009/02/	26 10:52	
	0003	MT		C)	108	2004/03/	31 06:56	
	0004	00001		C)	1	2009/02/	26 10:57	
	0005	00002		C)	1	2009/02/	26 10:57	
	0006	00005		C)	1	2009/02/	26 10:57	
	0007	00020		C)	1	2009/02/	26 10:57	
	0008	00029		C)	1	2009/02/	26 10:58	
Ľ	0009	00100		<u> </u>)	1	2009/02/	26 10:58	
	0010	00235		Ç)	1	2009/02/	26 10:58	
	0011	01300	UT	÷ .		,	1	2009/02/	26 10:58	
	0012	UNC-PH 1. I	XI	2		~ ~	121	2008/12/	23 10:37	
	0013	CNC_PO~2 T	vт	2			129	2005/02/	12 09:20	
-	0014		<u></u>				121	2003/02/	11 14.20	∇
						8.24				
						PMT **	*** *** ***	10:59	1:25	1
							$\gamma \pm \pm \pm \gamma$		Y	
<	┣检簿	₹ 又件 又 读取 i	(1千名) 读取	又 件 输出	▶删除	1 () () () () () () () () () () () () ()	表示史 ひょう あんしん しんしょう しんしょう しんしょう しんしょう あんしん しんしょう しんしん しんしょう しょう しんしょう しんしょう しんしょう しんしょう しんしょう しょう しょう しょう しょう しょう しょう しょう しょう しょう	NC DNC 定 解	余	
			~~~	100 114		( <u>~~</u> ,+				

选择需要加工的程序号,按【DNC 设定】。

4). 按机床操作面板上的循环启动按钮, 就可以执行 DNC 加工了。