SIEMENS

SINUMERIK

SINUMERIK 802D sl 平面磨削

编程和操作手册

<u> </u>	
说明	1
软件界面	2
开机和回参考点	3
设置	4
手动控制运行	5
自动运行方式	6
零件编程	7
系统	8
循环	9
编程	10
网络运行	11
保存数据	12
PLC 诊断	13

适用于控制系统 802D sl G/N 软件版本 SINUMERIK 1.4

法律资讯

警告提示系统

为了您的人身安全以及避免财产损失,必须注意本手册中的提示。人身安全的提示用一个警告三角表示,仅与财产 损失有关的提示不带警告三角。警告提示根据危险等级由高到低如下表示。

<u> </u>危险

表示如果不采取相应的小心措施,将会导致死亡或者严重的人身伤害。

表示如果不采取相应的小心措施,可能导致死亡或者严重的人身伤害。

⚠办心

带有警告三角,表示如果不采取相应的小心措施,可能导致轻微的人身伤害。

小心

不带警告三角,表示如果不采取相应的小心措施,可能导致财产损失。

注意

表示如果不注意相应的提示,可能会出现不希望的结果或状态。

当出现多个危险等级的情况下,每次总是使用最高等级的警告提示。如果在某个警告提示中带有警告可能导致人身 伤害的警告三角,则可能在该警告提示中另外还附带有可能导致财产损失的警告。

合格的专业人员

本文件所属的产品/系统只允许由符合各项工作要求的**合格人员**进行操作。其操作必须遵照各自附带的文件说明,特别是其中的安全及警告提示。由于具备相关培训及经验,合格人员可以察觉本产品/系统的风险,并避免可能的危险。

按规定使用 Siemens 产品

请注意下列说明:

⚠警告

Siemens 产品只允许用于目录和相关技术文件中规定的使用情况。如果要使用其他公司的产品和组件,必须得到 Siemens 推荐和允许。正确的运输、储存、组装、装配、安装、调试、操作和维护是产品安全、正常运行的前 提。必须保证允许的环境条件。必须注意相关文件中的提示。

商标

所有带有标记符号 [®] 的都是西门子股份有限公司的注册商标。标签中的其他符号可能是一些其他商标,这是出于保 护所有者权利的 目地由第三方使用而特别标示的。

责任免除

我们已对印刷品中所述内容与硬件和软件的一致性作过检查。然而不排除存在偏差的可能性,因此我们不保证印刷 品中所述内容与硬件和软件完全一致。印刷品中的数据都按规定经过检测,必要的修正值包含在下一版本中。

前言

资料结构

SINUMERIK 资料分为 3 种类型:

- 一般文献
- 用户文献
- 制造商/维修文献

在网页 http://www.siemens.com/motioncontrol/docu 中可获取下列主题的相关信息:

- 订购文献
 这里您可以查阅到当前的印刷品一览。
- 下载文献
 更多用于从"服务与支持"下载文件的链接。
- 在线检索文献
 获取 DOConCD 的信息,以及直接访问 DOConWEB 中的印刷品。
- 以西门子文献的内容为基础,使用 My Documentation Manager (MDM) 创建个人文 献,请访问 http://www.siemens.com/mdm

My Documentation Manager 提供了一系列功能用于创建用户自己的机床文献。

培训与 FAQ(常见问题解答)
 通过页面导航可以获取培训以及 FAQ(常见问题解答)的相关信息。

目标使用人群

该手册供编程人员、设计人员、机床操作员和设备操作人员。

使用

利用"编程和操作手册"目标用户可以设计、写入、创建和测试程序和软件界面以及消除故障。

此外,目标用户可以依据该手册运行机床的硬件和软件。

标准功能范畴

在现有文献中描述了标准功能范畴。 机床制造商增添或者更改的功能,由机床制造商资料进行说明。

控制系统有可能执行本文献中未描述的某些功能。但是这并不意味着在提供系统时必须带有这些功能,或者为其提供有关的维修服务。

同样,因为只是概要,所以该文献不包括全部类型产品的所有详细信息,也无法考虑到安装、运行和维修中可能出现的各种情况。

技术支持

技术疑难,请咨询下列热线:

	欧洲 / 非洲	
电话	+49 180 5050 222	
传真	+49 180 5050 223	
德国固定电话	舌价格: 0.14 欧/分钟,移动电话价格可能会有差别。	
互联网	http://www.siemens.com/automation/support-request	

	美洲
电话	+1 423 262 2522
传真	+1 423 262 2200
电子邮件	mailto:techsupport.sea@siemens.com

	亚洲 / 太平洋
电话	+86 1064 757575
传真	+86 1064 747474
电子邮件	mailto:support.asia.automation@siemens.com

前言

说明 各个国家的技术咨询电话请访问下列网址: http://www.automation.siemens.com/partner

文献资料疑问

如果您对该文献有疑问(建议,修改),请发送传真或电子邮件到下列地址:

传真	+49 9131 98 2176
电子邮件	mailto:docu.motioncontrol@siemens.com
传真表格见本	工 文献附录。

SINUMERIK 网址

http://www.siemens.com/sinumerik

欧盟一致性声明

EMC 规程的欧盟一致性声明请访问

- 网址: http://support.automation.siemens.com
 - ,产品/订货号 **15263595**
- 可以在西门子股份公司 I DT MC 销售区的负责办事处获得资料。

目录

	前言		3
1	说明		13
	1.1	操作和显示单元	. 13
	1.2	故障和状态显示	. 14
	1.3	CNC 全键盘(纵向格式)的按键含义	. 15
	1.4	机床控制面板的按键含义	. 17
	1.5	坐标系	. 19
2	软件界面	ī	23
	2.1	屏幕布局	. 23
	2.2	操作区域	. 28
	2.3	帮助系统	. 30
3	开机和回]参考点	33
4	设置		35
	4.1	输入刀具和刀具补偿	. 35
	4.2	创建新的刀具	. 37
	4.3	测定修整器	. 46
	4.4	测定工件	. 48
	4.5	成型/修整	. 50
	4.6	手动磨削	. 52
	4.7	对设定数据进行编程	. 56
	4.8	计算参数 R	. 60
	4.9	用户数据	. 61
5	手动控制	」运行	63
	5.1	手动控制运行	. 63
	5.2	运行方式 JOG - 操作区域"加工"	. 64
	5.2.1	运行方式 JOG 毛轮的分配	. 64
	J.Z.Z		. UI 69
	5.3.1	示教	. 71

6	自动运行	行方式	75
	6.1	自动运行方式	75
	6.2	加工补偿	81
	6.3	选择、启动零件程序	82
	6.4	程序段搜索	84
	6.5	实时模拟	87
	6.6	停止、中断零件程序	91
	6.7	中断后重新定位	92
	6.8	中断后重新定位	93
	6.9	执行外部程序	94
7	零件编程	₫	
	7.1	零件编程概述	99
	7.2	输入新程序	
	7.3	编辑零件程序	
8	系统		107
	8.1	操作区域"系统"	107
	8.2	SYSTEM - "调试"软键	112
	8.3	SYSTEM - "机床数据"软键	113
	8.4	SYSTEM - "维修信息"软键	120
	8.4.1	操作记录	
	8.4.2 8.4.3	何服跟踪 版太/HMI 详细信自	
	8.4.4	MSG 服务	
	8.5	SYSTEM - "PLC"软键	138
	8.6	SYSTEM - "调试文件"软键	146
	8.7	报警显示	152
9	循环		155
	9.1	循环概述	155
	9.2	循环的前提条件	158
	9.3	循环编程	
	9.3.1	调用和返回条件	159
	9.3.2	故障信息和故障处理	160
	9.3.2.1	概述	
	9.3.Z.Z	111小十的双厚处理	100

	9.3.3	循环调用与参数表	161
	9.4	程序编辑器的循环支持	165
	9.5	砂轮的 Z 轴定位 - CYCLE406	167
	9.6	安全位置 - CYCLE407	170
	9.7	3级式插入摆动(粗磨、精磨、研磨)-CYCLE408	171
	9.8	3级式平面磨削(粗磨、精磨、研磨) - CYCLE409	175
	9.9	修整和成型 – CYCLE416	179
	9.10	摆动插入 - CYCLE426	181
	9.11	带持续进给的平面磨削 - CYCL F427	184
	9.12	带间歇进给的平面磨削 - CYCL E428	187
	9.13	轮廓磨削 - CYCI F429	190
	9 14	修敕成刑辑 - CYCI F430	103
	0.15	世界风生代 - OT CLL-50	105
10	9.15	远洋砂花闼河还反-CICLL440	190
10	痈住		. 197
	10.1	数控编程基础	197
	10.1.1	程序名称 程序结构	197
	10.1.2	程// 细构 字结构和抽册	197
	10.1.4	1 31月7日地址 程序段结构	199
	10.1.5	符号组	202
	10.1.6	指令表	203
	10.2	位移说明	218
	10.2.1	尺寸编程	218
	10.2.2	平面选择:G17 到 G19	219
	10.2.3	绝对/增量尺寸: G90, G91, AC, IC	220
	10.2.4	公制尺寸和英制尺寸: G71, G70, G710, G700	222
	10.2.5	极坐标, 极点定义:G110, G111, G112	223
	10.2.6	可编程的零点偏移: IRANS, AIRANS	226
	10.2.7	可编程 旋转: ROI, AROI	227
	10.2.0	可编柱的比例系数: SOALE, ASOALE	229
	10.2.9	可编柱说家: MIRROR, AMIRROR	230
	10.2.10	工作表头	232 234
	10.3	轴运行	236
	10.3.1	快速移动直线插补 G0	236
	10.3.2	带进给率的直线插补 G1	238
	10.3.3	圆弧插补: G2,G3	240

10.3.4	通过中间点进行圆弧插补: CIP	.246
10.3.5	切线过渡圆弧CT	.247
10.3.6	返回固定点 G75	.248
10.3.7	回参考点运行 G74	.249
10.3.8	用接触式测量头测量MEAS, MEAW	.249
10.3.9	进给率 F	.251
10.3.10	准停/轨迹控制运行G9, G60, G64	.252
10.3.11	加速度性能: BRISK, SOFT	.255
10.3.12	加速度倍率: ACC	.256
10.3.13	- 另 4 牰	.257
10.3.14	留停时间: 64	.200
10.3.15	运行到回走扫伏	.259
10.4	主轴运动	.263
10.4.1	主轴转速 S,旋转方向	.263
10.4.2	主轴转速限制: G25,G26	.264
10.4.3	主轴定位: SPOS	.265
10.4.4	齿轮级	.266
10.4.5	第2 主轴	.266
10.5	特殊功能	.268
10.5.1	恒定切削速度: G96,G97	.268
10.5.2	倒圆、倒角	.270
10.5.3	轮廓编程	.273
10.6	刀具和刀具补偿	.276
10.6.1	一般说明	.276
10.6.2	刀具 T	.276
10.6.3	刀具补偿号 D	.277
10.6.4	选择刀具半径补偿: G41,G42	.280
10.6.5	拐角特性: G450,G451	.283
10.6.6	取消刀具半径补偿: G40	.284
10.6.7	刀具半径补偿的特殊情况	.285
10.6.8	刀具半径补偿举例	.286
10.7	辅助功能 M	.288
10.8	H 功能	.290
10.9	计算参数 R, LUD 和 PLC 变量	.291
10.9.1	计算参数 R	.291
10.9.2	局部用户数据(LUD)	.293
10.9.3	PLC 变量的读和写	.295
10 10	程序椕转	297
10.10.1	程序跳转的跳转目标	.297
10.10.2	绝对程序跳转	.297
10.10.3	有条件程序跳转	.298

	10.10.4	程序跳转举例	. 300
	10.11	子程序	302
	10.11.1	概述 调田加丁循环	. 302 305
	10.11.2	^{两小小加工} 加 ² 小	306
	10.12	运行时间定时器	. 306
	10.12.2	工件计数器	308
	10.13	一个程序段中包含多个进给率	. 310
	10.14	摆动	. 312
11	网络运行	r [°]	.317
	11.1	网络运行的前提条件	. 317
	11.2	RCS802 工具	. 318
	11.3	网络运行	324
	11.3.1	网络连接的配置	325
	11.3.2	用户管理	. 328
	11.3.3	用厂豆水-RCS 豆水	. 329 331
	11.3.5	共享目录	. 332
	11.3.6	连接和断开网络驱动器	. 333
12	保存数携	g	.335
	12.1	通过 RS232 接口进行数据传输	. 335
	12.2	创建并读出或读入开机调试存档	. 337
	12.3	读入和读出 PLC 项目	. 340
	12.4	复制和粘贴文件	. 341
13	PLC 诊断	升	.343
	13.1	屏幕结构	. 344
	13.2	操作选项	. 346
Α	附件		.359
	A.1	用户数据	359
	A.2	刀具数据的参数列表	363
	A.3	其它	. 372
	A.3.1	计算器	372
	A.3.2	编辑业洲字符	. 374
	A.4	资料反馈	378
	A.5	文献一览	380

词汇表	
步 己	202
余 フ	

说明

1.1 操作和显示单元

操作单元

通过水平和垂直软键可以调用所定义的功能。 有关各软键的功能说明请查阅本手册。

图 1-1 CNC 操作面板

说明

1.2 故障和状态显示

1.2 故障和状态显示

CNC 操作面板(PCU)上的 LED 显示

在 CNC 操作面板上布置有下列 LED 显示。

在下表中对 LED 及其所表示的含义进行了说明。

表格 1-1 状态显示与故障显示

LED	含义
ERR (红色)	严重错误,可通过重新上电消除错误
RDY (绿色)	运行就绪状态
NC (黄色)	生命符号监控
CF (黄色)	写/读 CF 卡

文献参考

故障描述请参见 SINUMERIK 802D sl 诊断手册

1.3 CNC 全键盘(纵向格式)的按键含义

1.3 CNC 全键盘(纵向格式)的按键含义

0		0		DEL	DEL 键
		() HELP		INSERT	INSERT 键
°O V	N G P Y Z C	⁸ 789 ⁸ 4 ⁵⁶		TAB	Tab 键
- M	AJKR STL	¹ 1 [®] 2 [#] 3 - ¹ 0 ^{>} ·			INPUT 键
F C	D H B	?/ = + → DEL ⊗ c		POSITION	操作区按键 POSITION ("加工"操作区)
				PROGRAM	操作区按键 PROGRAM ("程序"操作区)
		POSITION PROGRAM OFFSET PARAM SYSTEM		OFFSET PARAM	操作区按键 OFFSET PARAM ("参数"操作区)
END	PAGE DOWN	Manager LLARM CUSTOM		PROGRAM MANAGER	操作区按键 PROGRAM MANAGER ("程序管理器"操作区)
					操作区按键 SYSTEM/ALARM ("系统/报警"操作区)
0		0		CUSTOM	操作区按键 CUSTOM (用户定制操作区)
>	扩展键	\land	返回键	NEXT WINDOW	未占用
ALARM CANCEL	ALARM CANCE	L 键		PAGE UP PAGE DOWN	翻页键
1n L CHANNEL	无功能				
(i) HELP	Info 键	END			
SHIFT	Shift 键	SELECT	SELECT 键/切换键		光标键
CTRL	Ctrl 键		空格键 (SPACE)	A J Z	字母数字键 通过 Shift 键切换字符
ALT	ALT 键	H ACKSPACE	退格键 (Backspace)	(9)0	数字键 通过 Shift 键切换字符

热键

1.3 CNC 全键盘(纵向格式)的按键含义

在零件程序编辑器和 HMI 的输入栏中可以通过 CNC 全键盘的按键组合来执行下列功能:

按键组合	功能
<ctrl>和 <c></c></ctrl>	复制选中的文本
<ctrl>和 </ctrl>	选中文本
<ctrl>和 <x></x></ctrl>	剪切选中的文本
<ctrl>和 <v></v></ctrl>	插入复制的文本
<alt> 和 <l></l></alt>	转换至小写。
<alt> 和 <h> 或者见按键 <help></help></h></alt>	调用帮助系统
<alt> 和 <s></s></alt>	激活/关闭亚洲字符编辑器

说明

1.4 机床控制面板的按键含义

1.4 机床控制面板的按键含义

RESET

1 %

CYCLE STOP (NC STOP)

CYCLE START (NC START)

NOT-AUS

Spindle Speed Override 主轴倍率

用户定义键,带 LED

用户定义键,不带 LED

INCREMENT 增量尺寸

JOG

REFERENCE POINT 参考点

AUTO

SINGLE BLOCK 单程序段

MANUAL DATA 手动输入数据

SPINDEL START LEFT 主轴逆时针方向旋转

SPINDEL STOP

SPINDEL START RIGHT 主轴顺时针方向旋转

RAPID TRAVERSE OVERLAY 快速移动叠加

X 轴

Y轴

Z 轴

Feed Rate Override 进给倍率

平面磨削 编程和操作手册, 07/2009, 6FC5398-5CP10-1RA0 1.4 机床控制面板的按键含义

说明

该手册中所有的说明都是以标准机床控制面板 MCP 802D 为依据的。如果使用其它的机床控制面板 MCP,则操作可能会与该说明有所不同。

1.5 坐标系

坐标系通常由三条相互垂直的坐标轴组成。通过右手的"三指定律"可以确定各个坐标轴的 正方向。坐标系以工件为参考,编程不受刀具或者工件移动的影响。编程时始终假定: 工件静止,而刀具相对于工件坐标系发生位移。

图 1-2 确定编程时轴的相互方向、坐标系

机床坐标系(MCS)

机床坐标系的建立取决于各个机床的类型。它可以旋转到不同的位置。

轴方向的确定遵循右手的"三指定律"。 站到机床面前,伸出右手,中指与主主轴进刀的方 向相对。

图 1-3 磨床(气缸磨床、平面磨床)上的 MCS

此坐标系的原点是机床零点。

该点仅作为参考点,由机床制造商确定。机床开机后不需要回原点运行。

机床坐标轴可以在坐标系负值区域内运行。

工件坐标系(WCS)

用一个右旋的直角坐标系来描述工件在工件坐标系中的几何数据。编程人员可以在 Y 轴 上任意选择

图 1-5 工件坐标系

相对坐标系(REL)

除了机床坐标系和工件坐标系之外,该系统还提供一套相对坐标系。使用此坐标系可以 自由设定参考点,并且对工件坐标系没有影响。屏幕上所显示的轴运动均相对于此参考 点。

说明

通过"加工"操作区内的垂直软键"MCS/WCS REL"可以激活并显示各个坐标系中的实际 值。

说明

1.5 坐标系

工件装夹

加工工件时工件必须夹紧在机床上。固定工件,保证工件坐标系坐标轴平行于机床坐标 系坐标轴。由此产生了机床零点与工件零点在Y轴上的偏移,该值输入到**可设定的零点** 偏移中。当 NC 程序运行时,可以用已编程的指令 **G54** 激活此偏移量。

图 1-6 工件在机床上

当前工件坐标系

使用可编程的零点偏移 TRANS 可以设置相对于工件坐标系的偏移。从而产生了当前工件坐标系(参见章节"可编程的零点偏移 TRANS")。

图 1-7 当前工件坐标系的工件坐标

2.1 屏幕布局

1/12/22/36	N:\MPF\MPF0	.MPF			SIEN	IENS	
	MKS Refe	renzpunkt		T, F, S			
	X10	0.000	mm	T 1		D 1	
	Y10	0.000	nn	F	0,000 0.000	30% mm/min	
	Z10	0.000	mn	S1	0,0 0.0	50% I	
应用区域	A1 () 601	0.000 G500	мм G60				_
							REL

图 2-1 屏幕划分

屏幕分为以下几个主要区域:

- 状态区域
- 应用区域
- 提示和软键区域

状态区域

	1 2 ▲uto N: \MPF\BE ISP IEL2. MPF RESET SKP DRY ROV M01 PRT SBL 5 6	SIEMENS
图 2-2	状态区域	

2.1 屏幕布局

表格 2-1 状态区域各图形单元释

编号	显示	符号	意义
1	有效操作区域	.M.	位置 (操作区域键 <position>)</position>
		٢	系统 (操作区域键 <system>)</system>
			程序 (操作区域键 <program>)</program>
			程序管理器 (操作区域键 <program MANAGER>)</program
			参数 (操作区域键 <offset param="">)</offset>
			报警 (操作区域键 <alarm>)</alarm>
2	有效操作方式	Ref Point	返回参考点
		Х. Jog	JOG
		→] [100]	JOG INC; 1 INC, 10 INC, 100 INC, 1000 INC, VAR INC (JOG 运行方式下增量求值)

2.1 屏幕布局

编号	显示	符号	意义		
		MDA	MDA		
		Auto	AUTO		
3	报警和信息行		显示以下其中一项:		
			1. 报警号,带报警文本		
			2. 信息文本		
4	选择的零件程序(主程序)				
5	程序状态	RESET	程序中断/基本状态		
		RUN	程序正在运行		
		STOP	程序已停止		
6	自动运行方式下的程序控 制				

提示和软键区域

2.1 屏幕布局

图形单元	显示	意义
1		返回键 按下返回键,返回到上一级菜单。
2		提示信息行 显示操作提示信息和故障状态
3		HMI 状态信息
		可以使用扩展键(按下此键,水平软键栏显示更多功能。)
	" <i>Ł</i> "	混合书写方式(大写/小写)有效
		RS232 连接有效
		与调试和诊断工具(例如:编程工具 802)的连接有效
	RCSE	RCS 网络连接有效
4		垂直和水平软键栏

表格 2-2 提示和软键区域各图形单元释义

文献中的软键显示

水平软键和垂直软键以不同的底色显示,以便快速找到相应软键。

水平软键

垂直软键

2.2 操作区域

2.2 操作区域

控制系统的功能可以在下列操作区域中执行:

MACHINE	POSITION(位 置)	机床操作
OFFSET PARAM	OFFSET PARAM (参数)	输入补偿值和设定数据
PROGRAM	PROGRAM(程 序)	创建零件程序
PROGRAM MANAGER	PROGRAM MANAGER(程序 管理器)	零件程序目录
SHIFT + SYSTEM	SYSTEM(系统)	诊断和调试
SYSTEM	ALARM(警告)	报警和信息行
CUSTOM	CUSTOM(定制)	用户可调用自己的应用程序

按下 CNC 全键盘上相应的键(硬键)切换到其他操作区域。

2.2 操作区域

保护等级

在 SINUMERIK 802D sl 中有一个保护等级方案用来释放数据区。 控制系统中已包含保护 等级 1 到 3 的标准口令。

保护等级 1	专家口令
保护等级 2	制造商口令
保护等级 3	用户口令

这些口令赋予不同的存取权限。

在下列菜单中,输入或者修改数据取决于所设定的保护等级:

- 刀具补偿
- 零点偏移
- 设定数据
- RS232 设定
- 程序编制/程序修改

2.3 帮助系统

2.3 帮助系统

系统中包含广泛的在线帮助。帮助主题有:

- 所有重要操作功能的简要描述
- NC 指令的概览和简要描述
- 驱动参数说明
- 驱动报警说明

操作步骤

在每个操作区域中,可以按下信息键或者<ALT+H>调用帮助系统。

图 2-4 帮助系统: 目录

2.3 帮助系统

软键

显示

此功能显示所查询的主题。

图 2-5 帮助系统: 主题说明

转到 主题

利用此功能,可以进行参照。参照功能通过符号 ">>....<<" 来表示。只有当应用区域中显示参照时,该软键才可见。

返回到 主题

搜索

选择一个参照后,则另外显示软键"返回到主题"。 利用此功能可以返回到前一个画面。

利用该功能可以查找目录中的某关键字。输入关键字并开始查找过程。

程序编辑器区域中的帮助

帮助系统提供每个 NC 指令的含义。可以把光标移到指令之后并按下信息键,调用帮助 文本。 NC 指令此时必须是大写。

2.3 帮助系统

开机和回参考点

说明

在给 SINUMERIK 802D sl 和机床通电以后,必须参照机床操作文献,因为"开机和回参考 点"这一功能与机床有着十分重要的关系。

操作步骤

首先接通 CNC 和机床电源。

控制系统引导启动以后进入操作区"加工","回参考点"运行方式。

"回参考点"窗口激活。

M Ref Po	_ Dint			
N:\SYF\0ST	ORE1.SYF	SIE	MENS	
MCS 参利	学 DRY ROY MOI PRI SBL		工艺数据	
X1®	0.000	mm	Т 0	D Ø
Y1⊕	0.000	m	F 0,000	100% mm/min
Z10	0.000	m	S1 8:8	110% I
A1 () G01	0.000 G500	мм G60		
				MCS/WCS 相对坐相
		4		RCSE

图 3-1 "回参考点"基本画面

在"回参考点"窗口中将显示该坐标轴是否回到了参考点。

- 轴进行了回参考点/同步

按下方向键。

设置

4.1 输入刀具和刀具补偿

功能

在操作区"参数"中可以储存机床加工需要的参数。

操作步骤

OFFSET PARAM

该功能会打开"刀具补偿数据"窗口,其中包含有已创建刀具的列表。在该表中可以使用光标键以及<上页>和<下页>键进行定位。

♦ [0]					
「 」 」 」 」 」 」 」 」 」 の 」 」		有效刀具·	뮥:	0	
刀具号	砂轮直径	砂轮宽度	成型轮	廓 S-No	
1	298.72000	49.30718	$\overline{\mathbf{a}}$	1	删 除 修整量
2	499.42265	50.00000	$\overline{\diamond}$	1	
3	499.86000	0.0000	Ĭ	1	加味刀具
4	199.67668	50.00000		0	<u> 낐</u> 퉢
5	0.0000	0.0000		0	
12	0.0000	0.0000		0	复制刀具
	1	1		_	搜索
					JX JX
,				음음 RCS 온	新刀具
刀具列表		零点 偏移	参数	设 定 数 据	用 户 数 据
E					
图 4-1	ノ具表				

可以将光标条定位到需要修改的刀具上并按下软键 <刀具数据> 来输入补偿值。

设置

4.1 输入刀具和刀具补偿

软键

Delete dr. am.	删除计算的修整器数据。
删除 刀具	刀具被删除。
刀具 数据 額定尺寸 监控 几何尺寸 数据 工艺 数据 修整器 1	打开下级菜单栏,它提供了创建和显示刀具数据的所有功能。 使用该功能可以在菜单引导下输入额定尺寸和砂轮的监控数据。 该功能用于输入选定砂轮类型的砂轮几何尺寸。 该功能用于输入选定砂轮类型的修整工艺值。
扩展 复制 刀具	该功能用于输入/检查第1修整器数据。 可以通过相应的软键为第2和第3修整器选择该功能。 该功能用于输入/检查所有的刀具数据(D1至D9)。 使用该功能可以复制已经创建好的刀具。
搜索	使用该功能可以依据编号查找刀具。
新建 刀具	为新刀具创建刀具补偿数据。
R 参数	使用该功能可以列出控制系统中现有的全部 R 参数,并可以在需要时进行修改。
设定数据	设定数据的输入。
用户数据	使用该功能可以列出控制系统中现有的全部磨削用户参数,并可以在需要时进行修改。
4.2 创建新的刀具

功能

刀具补偿由一系列数据组成,这些数据包括几何参数、磨损量参数和刀具型号。 不同类型的刀具都有一个确定的参数值。每个刀具分别通过一个编号 (T 号)进行识别。

操作步骤(通用)

OFFSET PARAM

按下 <OFFSET PARAM> 键。

刀具 列表

该功能会打开"刀具表"窗口,其中包含有己创建刀具的列表。在该表中可以使用光标键以及<上页>和<下页>键进行定位。

刀具列表		有效刀具·	号: 0		
刀具号	砂轮直径	砂轮宽度	成型轮廓	S-No	
1	298.72000	49.30718	\Box	1	删 除 修整量
2	499.42265	50.00000		1	DDI RA-
3	499.86000	0.0000	Ň	1	
4	199.67668	50.00000		0	刀具
5	0.0000	0.0000		0	<u> 叙</u> 唐
12	0.0000	0.0000		0	复 制 刀 具
I					
					搜索
-				RCS	新刀具
刀具列表		零点 偏移	数	殳 定 数 据	用 户 数 据

图 4-2 刀具表

刀具 数据

可以将光标条定位到需要修改的刀具上并按下软键"刀具数据"来输入补偿值。

操作步骤(新刀具)

新建 刀具

该功能可以打开输入屏幕窗口,可以在其中对刀具编号、刀具类型和砂轮形状进行输入或 选择。

4.2 创建新的刀具

<u>川</u> 具列表 刀具号	砂轮直径	: ₹	沙轮宽度	成型轮廓 S-No	
新刀具 刀具号 刀具类型	20 21 21 21	<u>监控带</u> GWPS <u>基本</u>			
砂轮成当 		直线不后撤 直线后撤 左倾斜	类型		
		石倾斜 直线成型滚子	·台面		★
				RCSE	确认

图 4-3 新刀具

按下"OK"键确认输入值。

刀具列表		有效刀具	뮥:	0	
刀具号	砂轮直径	砂轮宽度	成型轮	郭 S-No	
1	298.72000	49.30718	\Box	1	删 除 修整量
2	499.42265	50.00000	\diamond	1	冊居会
3	499.86000	0.0000	Ň	1	刀具
4	199.67668	50.0000		0	刀具
5	0.0000	0.0000		0	剱 掂
12	0.0000	0.0000		0	夏制刀具
20	0.0000	0.0000	77	0	401.44
					授系
					新刀具
刀 具 列 表		零点 偏移	参数	设 定 数 据	用 户 数 据

图 4-4 插入新刀具

将预设为零的数据程序段接收入刀具表。 该数据程序段由 9 个刀沿构成(D区)。前 6 个刀沿的刀沿类型相同,用作刀沿的几何数据点。

在栏 "S 号"中进行输入以分配刀具给磨削主轴。 值 ≤0 时为外部控制的磨削主轴, 值 >0 时为控制系统的磨削主轴。

说明**:**

S2 表示外圆磨削。

S1 表示平面磨削。 输入值 1 时,进行内部换算。

对于标准砂轮(平形和斜面砂轮),其D号有着确定的含义(参见下图"补偿值")。在 调整和修整时,总是按照几何数据来进行分配设置。

对自由轮廓的砂轮,由用户负责设置刀沿。只有在创建新砂轮或删除磨损值时,需要根据修整角度对刀沿进行一次性预设置。预设时角度 =0,与单面平形砂轮一样,即:非直线刀沿(D1、D3、D5)在砂轮宽度的左侧,而直线刀沿(D2、D4、D6)在其右侧。

对斜面砂轮进行预设置时,始终要保持所有的参考点都相等。不能出现偏左和偏右的差别。用户可以在修整子程序中定义刀沿。此时必须遵守 NC 句法。在一个完整的修整行程后就接收修改值,而不是在成型时接受修改。与标准砂轮时一样进行参考点的补偿。

同样,只有当各自的 D 号中既含有直径又含有磨损值时,直径和宽度的监控才开始生效。这样用户可以在自由轮廓中控制其他的参考点。不过必须遵守左侧和右侧刀沿的规定,因为总是按标准砂轮的方式(左负右正)进行补偿计算。

4.2 创建新的刀具

图 4-5 补偿值

刀沿 7-9 作为修整刀具,可以在缺省补偿中拥有固定分配的刀沿。

表格 4-1 修整器分配

D区	修整器	分配
D7	修整器 1	左/前刀刃
D8	修整器 2	右/后刀刃
D9	修整器 3	用于砂轮直径的选项

- 额定尺寸/监控
- 几何数据
- 工艺数据
- 用于修整器的数据

额定尺寸与监控

额定尺寸 监控

该功能可以打开一个输入屏幕窗口,可以在其中输入磨削砂轮的额定尺寸与监控数据。

图 4-6 磨削砂轮的额定尺寸/监控数据

几何数据

几何尺寸 数据

使用该功能可以为选定的砂轮类型输入几何尺寸数据。

4.2 创建新的刀具

几何数据			T: 1				标称尺寸
砂轮类型	直线后撤			C			监控
			17	•		7	几 何 数 据
地理学品	直径		· · /				技术
球曲局度	10 00000	mm					<u> </u>
把灯 返回数据 周柱补偿	0.0000	mm	1			4	第1
	0.00000	rin					修整器
	左		右		• •	-1 1-	442
溢出	10.00000	мм	5.00000	мм			- 新5 修敷哭
半径	5.00000	mm	0.00000	m			19 15 66
倒角×	0.0000	mm	0.00000	mm			第3
倒角Z	0.0000	MM	0.0000	MM			修整器
細肩品度	5.00000	mm	5.00000	mm			10 et
退切用	0.10000		0.10000				扩展
必切商援	20.00000	MM	0.00000	MM			
						<u>율</u> 율 805보	返回
刀 具 列 表			零点偏利	気多	R参数	设 定 数 据	用 户 数 据

图 4-7 在平形砂轮带有后拉行程的示例中的几何尺寸数据

提供有下列砂轮类型:

- 平形砂轮,无后拉行程(类型1)
- 平形砂轮,带后拉行程(类型2)
- 斜面砂轮, 左 (类型 3)
- 斜面砂轮,右(类型4)
- 自由轮廓 (类型 **0**)

输入屏幕窗口会自行说明。

说明

在原理草图上会有一个红色标识出刚刚输入的几何尺寸值。

工艺数据

エ艺 数据

使用工艺数据输入可以按照砂轮类型输入修整工艺值。

<u>设置</u> 4.2 创建新的刀具

工艺数据	T:	1			标称尺寸
修整方向	即不拉也不	、推(第3修县	密器)	<mark>0</mark>	监控
	直径				「個
修整量	0.02000	mm			数 据
修整器磨损 ×	0.0000	mm			
修整器磨损 Z	0.0000	mm			技术
进给率	0.50000	mm/rev			数据
					供1
	左		右		- 年
修整量	0.01155	mm	0.01155	mm	19 IE 68
修整器磨损 ×	0.0000	mm	0.00000	mm	第2
修整器磨损 Z	0.00000	mm	0.00000	mm	修整器
进给轨迹	0.50000	nm/rev	0.50000	mm/rev	144.0
进给举	0.50000	mm/rev	0.50000	mm/rev	第3
지 산 명명 방송					修登器
10°轮回周速度			50.00000	m/s	
砂牝7修登轮圆周速度比			0.00000		扩展
空仲桂奴			6		
)				8.8	
				RČSE	返回
川井		令 点 伯 我	R参数	议 正 粉 塀	用尸粉据
	V	MH 132		双、1日	双、16

图 4-8 在平形砂轮带有后拉行程的示例中的工艺数据

修整器

修整器 1

使用软键"第1修整器"、"第2修整器"或"第3修整器"可以进入对话框,用来输入或检查修整数据。

修整器数据	T: 1	示称尺寸 時 控
类型 刀沿位置	固定修整器 ○ 0	し何数据
位 <u>置</u> × 位置 Z	69.28001 mm 50.80180 mm	支 术 数 据
刀沿半径 最大磨损 ×	0.10000 mm 0.00000 mm	₽1 多整器
最大磨损 Z	0.0000 mm	<mark>肖2</mark> 冬 <u>郫哭</u>
直径 宽度	0.0000 mm 0.0000 mm	¥3
最大线速度	0.00000 m/s	多整器
型面深度	0.00000 mm	扩展
女王初述		_ « _
TT E		返回
列表	● □	用

图 4-9 固定修整器

在"类型"切换区中可以选择修整器类型:

4.2 创建新的刀具

固定修整器: 陶瓷/金刚石 成型辊 1 到 3 金刚石辊 1 到 3

根据出现的选择输入参数。

修整器数据	T: 1 标称尺寸	ţ
sis mu		Ĺ
	0 几何	
	秋 1倍	
	59 29901	
1 <u>20月</u> へ 位置 Z	50.80180 mm	
刀沿半径	0.10000 mm 第1 後敷型	
最大磨损 ×	0.0000 mm	
取入增加 4	第2 修整哭	
直径	0.00000 mm	
() 一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一	0.00000 mm 第3 0.00000 m/s 修整哭	
最大转速	0.00000 rev/mi	
型面深度	0.00000 mm 扩展	
安全转速	0.00000 rev/mi	
	· · · · · · · · · · · · · · · · · · ·	
刀具	零点 P参数 设定 用户	
グリ 衣	如何 例 例 描 划 描	

图 4-10 成型辊

图 4-11 金刚石辊

<u>设置</u> 4.2 创建新的刀具

参数列表

扩展

该功能可以打开所有刀沿参数的清单。

说明: 该功能仅在确认过(用户)密码后才可以使用。

	Jog			
刀沿专用	用磨削数据	T:	1 D: 1	D >>
	说明		值 🚺	
DP1	刀具类型		403.000	
DP2	刀沿位置		0.000	<< D
DP3	新砂轮的半径		150.000	
DP4	砂轮参考点的间距		0.000	
DPS	预留(长度 ³)		0.000	
DP6	刀沿半径		0.000	输入
DP7	修整量		0.012	极限
DP8	修整器磨损×		0.000	
DP9	修整器磨损Z		0.000	
DP10	进给轨迹		0.500	
DP11	进给 ×		0.500	TPG1n
DP12	直径修改(修整量 ×)		-0.640	IFCIII
DP13	间距修改(修整量 Z)		-0.346	
DP14	预留(长度 ³)		0.000	
DP15	动松坐径修改(廊墙 R)		0.000	"
			RCS B	返回
刀具列表	零。	点 R参数 移	: 设定 数据	用 户 数 据

图 4-12 所有刀沿数据的列表。

刀具补偿数据

参见附录中的"刀具补偿数据参数表"章节

4.3 测定修整器

4.3 测定修整器

功能

该功能可以借助几何轴为修整器采集机床中的修整器位置。可以通过 HMI 在机床坐标中 测出轴的值,并将其传输给循环。

操作

修整器的测定要在 JOG 运行方式下进行。

打开输入屏幕。

M		ur .							
■ 復位	SKP DRY F	TF ROV MØ1 PRT S	BL.				SIE	MENS	
WCS	位	置	再定位偏移		II	艺数排	Ŧ		
Х	500	. 0000	0.0000	mm	Τ	1		D 1	X1
Y	289	2200	0.000	mm	F		0,0000 0.0000	120% mm/min	Y1
Ζ	-0	6536	0.0000	мм	S	1	0,0	100% T	Z1
					-		0.0	1	
691		654	660						
记录修整	容器								
在轴方	 向上逼䜣修	8整器并启动;	+算。						计管
	() ()								い 舟 位 置
修整器	编号:	1 🖸 🛸	X1	0.00	00	мм			
	3		Y1	0.00	00	mm			
2			Z1	0.00	00	mm			
									×
								RCSE	返回
手 动 磨 削		记 录 修整器	记 录 工 件	成型	<u>ų</u>				设置

图 4-13 测定修整器

通过转换栏"修整器编号"可以选择需要测定位置的修整器(例如:"1")。其中,顺序无关 紧要。

可以独立测定每根轴。

在文本行中会显示必要的操作步骤。

一个箭头会标示出待加工轴所在行。

说明

在使用摆动砂轮时,必须保证砂轮已经处于修整角度上。

4.3 测定修整器

计算位置

返回

所选轴对刀后,通过"计算位置"读取轴的实际值,并使用激活的刀具计算。 行末的绿勾表示该过程已经记录。 对于标准砂轮,系统根据选中的修整轮(1和2)自动选择D号。 而对于修整轮3,请选择D号或运行有效的砂轮,因为系统不能自动识别它。 功能"测定修整器"结束。 4.4 测定工件

4.4 测定工件

功能

该功能可以为采集工件在机床各个轴的位置。 通过 HMI 将轴名称与额定值传输给循环。

操作

测定工件需要在 JOG 运行方式下进行,通过在各个轴上对刀完成测定。

打开输入屏幕。

M	XX Jog				
N:\SYF\	OSTORE1.SYF	r col	SIE	MENS	
WCS	位置	再定位偏移	工艺数据		
Х	500.0000	0.0000 mm	T 1	D 1	
Y	289.2200	0.0000 mm	F 0,0000	120% mm/min	
7	-0 6536	0.0000 mm	S1 0,0	100%	
4	0.0000		0.0	I	
GØ1	G54	G6Ø			
记录工作	‡				
	轴名称	定 500.0000 mm	G54 🔾		计
				2.2	.
主力		김 규		RCS	返回
磨削	修整器	工件 成型	2		设置

图 4-14 测定工件

返回

通过转换区"轴名"选择需要的轴,并将预先测量的工件额定值写入输入区内。 按下软键"计算位置"转,计算额定值。

说明

必须分别为每根轴执行该过程。

功能"测定工件"结束。

与手动磨削一起使用时的特殊性

在 手动磨削 (页 52)时,如果使用 PLC 按键 "手轮" 中断了手动磨削,可接下来执行"测定 工件" > "计算位置"来计算进给轴的最后位置。

在 HMI 上方会显示以下文本:

"接收手动磨削中的设置值 - 按下 NC START 继续"。

M 采用手动磨削的设置值 - 通过MC启动继续操作 !!!								
N:\MPF	N:\MPF\ECO_MAIN.MPF SIEMENS							
፼停止 ₩CS	SKP DRY ROY	M01 PRT SE	□	: MU/M1石	ī效 艺数据			
Х	0.0	0000	0.0000	m T	1	D 1		
Y	-12.9	9600	0.0000	m F	0,0000 0.0000	90% mm/min		
Z	-24.3	3755	0.0000	" S1	768,1 768,1	100% I		
GØ1	GS	54	G60			2		
记录工	ال							
	轴名称	设定					计算	
	Y 🧿	(3.0000 mm	G54	U O			
						운 음 RCS 문		
			记 录 工 件					

图 4-15 手动磨削后测定工件

计算只用于手动磨削中的进给轴,且只能在手动磨削后立即进行一次。如果"测定工件"被 取消且另外的轴被设置为最后的进给轴,则必须对各个轴在当前位置重新进行校准。 4.5 成型/修整

4.5 成型/修整

功能

该功能可以不使用 NC 程序生成一个成型的"毛坯"磨削砂轮。 该过程始终与当前有效的刀 具有关。

操作

成型要在 JOG 运行方式下进行。

打开输入屏幕。

M:\SYF\05T	TORE1.SY	F					SIF	MENS	
Z 复位 SI	KP DRY R	OV MØ1 PRT S	BL					VIENS	
WCS	位	置	再定位偏移		II.	艺数据			
Х	500.	0000	0.0000	mm	T	1		D 1	
Y	289.	2200	0.000	nm	F	l	0,000 0.0000	120% mm/min	
Z	-0.	6536	0.000	MM	S1	l	0,0 0.0	100% I	
GØ1	6	354	G6Ø						
成型									
		余重							起始
直径		0.00	80 mm	冲程数	负量			1	型面
左侧		0.00	00 mm						
右側		0.00	00 mm						
E PA									
,								음 음 RCS 옵	返回
手动磨削		记 录 修整器	记 录 工 件	成酉	1				设置

图 4-16 成型

通过输入区写入必要的成型量,经过几次修整后达到此成型量。 对于新砂轮(无磨损),由控制器建议使用什么样的成型余量。可自由选择修整次数。 按下软键"启动成型",显示以下询问:

执行成型。

在循环中首先处理成型余量,然后完成全部的修整。在区域中会显示出当前的状态。 可以随时中断该过程。

按下软键"启动成型"可以重新开始此过程。此时可以对数值进行修改。 功能"成型"结束。 4.6 手动磨削

4.6 手动磨削

功能

该功能用作使用手轮的磨削(精磨)。该功能不需要使用工件程序。

操作

在 <JOG> 运行方式下进行手动磨削。

打开输入屏幕。

在手动磨削的输入屏幕中输入参数(参见下图):

- T 号和 D 号
- 通过转换栏选择摆动运行。
 允许以下摆动运行:
 - 没有功能
 - Y 轴进给没有摆动
 - 进给 Z 轴 无摆动
 - 进给Y轴, 摆动X轴
 - 进给 Z 轴, 摆动 X 轴
 - 进给 Y 轴, 摆动 X/Z 轴
- 刀具圆周速度[m/s]
- 工件转速(转/分钟)

手动磨削,没有摆动

下图显示了手动磨削的参数输入屏幕,该手动磨削没有摆动:

Ν										
Ν:	\SYF\OSTORE	1.SYF						SIE	MENS	
✓ 須 MCS	夏位 SKP D	RY ROV I		BL 軍空給値救		 	ᢞᢧᡰ᠋ᡦ	t		
Y	< 50	0.00	000	丹尼区隔19 0.0000	mm	T	1	1	D 1	
ነ	' 28	39.22	200	0.0000	мм	F		0,0000 0.0000	120% mm/min	
Z		0.6	536	0.0000	MM	S1		0,0 0.0	100% I	
GØ1		G54		G60						
手	动磨削									
т	1	D 1 🚺								启动
往	复运动		进	给 Y轴无摆动	力				<mark>0</mark>	磨削
ヵ	具圆周速度			0.0000						
										«
									RCSE	返回
手磨	动削	1	记 录 修整器	记录 工件	成型	1				设置

图 4-18 没有摆动的手动磨削

M SIEMENS ☑复位 SKP DR ₩CS 位置 再定位偏移 工艺数据 0.0000 mm Х тØ 384.1486 DØ 0.0000 120% 0.0000 nm/m: F nn/nin Ζ 0.0000 mm -9.7760 0 0 120% 0 I \sim **温示信息** 选择的程序启动了轴进给运行**!** 要继续加工吗**?** 100% I 120% GØ1 手动磨削 D 1 🕘 т 1 0 往复运动 进给 ×轴无摆动 刀具圆周速度 0.0000 中断 工件转数 0.0000 确认 RCSE

该功能用于启动使用手轮的手动磨削。显示以下询问。

图 4-19 询问

使用手轮进行手动磨削(没有摆动)。

οк

启动

磨削

手动磨削结束。

4.6 手动磨削

手动磨削,摆动

下图显示了手动磨削的参数输入屏幕,该手动磨削带摆动:

	STORE1.SYE						SIE	MENC	博士
■复位	SKP DRY ROY	MØ1 PRT S	BL				SIE	VIENS	数据
WCS	位置		再定位偏移		工艺	艺数据	1		
Х	500.0	0000	0.0000	mm	T	1		D 1	
Y	289.2	200	0.0000	мм	F		0,0000 0.0000	120% mm/min	
Ζ	-0.6	536	0.0000	мм	S 1		0,0 0.0	100% I	
GØ1	GS	4	G60						
手动磨削									
Т 1	D 1								
往复运动		进	给 Y轴摆动	X/Z轴				U	
「耳風周囲	谏度		0.0000						
71-94-1001041	////x								
									u
								RCSE	返回
手动磨削		记 录 修整器	记录 工件	成雪	1				设置

图 4-20 手动磨削,带摆动

如果选择了摆动,则可以通过该功能输入摆动数据(参见下图):

M 3	<u>~</u>								
N:\SYF\0	STORE1.SY	F	.01				SIE	MENS	位置1 X
₩CS	位	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	再定位偏移		LIZ	艺数排	扂		
Х	500.	0000	0.000	mm	Т	1		D 1	位重2 ×
Y	289.	2200	0.0000	мм	F		0,0000 0.0000	120% mm/min	位置1 Z
Ζ	-0.	6536	0.0000	mm	S1	l	0,0 0.0	100% I	位置2 z
GØ1 dest⇒te ¥ke dest		G54	G60						
法初数据		心里。					心里。		
		位直1					121月2	00	启动
	~ 7	9,0000				~ 7	100.00	90 00	磨刖
あん/合け+ 心守	2	-0.6536	新日/吉	तम्भाज		2	-100.00	00 00	
習行的問		4.0000	音厅	可用		-	4.00	00 00	
进纪平	x	100.0000	进纪	平		2	100.00	88	
								RCS R	返回
手 动 磨 削		记 录 修整器	记录工件	成型	1				设置

图 4-21 手动磨削,带 X 和 Z 的摆动数据

允许以下摆动数据:

- 位置1(起点)/2(终点):
 - 在相应的输入栏中使用数字键输入位置 1/2。
 - 使用机床操作面板上的方向键 <X> 或 <Z> 运行到位置 1/2,并通过垂直软键"位置 1"/"位置 2"将位置值接收入输入栏(示教)。
- 位置1换向点的暂停时间(存在刀具主轴时,单位为秒,否则为转)
- 进给率 X((毫米/分钟)
- 进给率 Z (毫米/冲程)
- 位置2换向点的暂停时间(存在刀具主轴时,单位为秒,否则为转) 该功能用于启动使用手轮的手动磨削。显示以下询问: "所选程序会启动轴运行!还要继续操作吗?" 使用手轮进行手动磨削(摆动)。

ок 🎈

结束手动磨削

手动磨削结束。

与"测定工件"一起使用时的特殊性

在手动磨削中使用 PLC 按键"中断"和"修整",可以在手动磨削时对磨削过程进行控制。

使用 PLC 按键"手轮"在进给轴的起始位置结束手动磨削。 使用 PLC 按键"手轮"中断手动 磨削时,进给轴的最后位置会被保存下来。所保存的进给轴位置接着可通过"测定工件 (页 48)"进行计算。

计算只用于手动磨削中的进给轴,且只能在手动磨削后立即进行一次。如果"测定工件"被 取消日另外的轴被设置为最后的进给轴,则必须对各个轴在当前位置重新进行校准。

4.7 对设定数据进行编程

4.7 对设定数据进行编程

功能

使用设定数据可以确定运行状态的设置。可以在需要时对其进行修改。

操作步骤

OFFSET PARAM

它们位于操作区<OFFSET PARAM>中。

设定数据

按下软键"设定数据"。 打开基本画面"设定数据"。 此处可使用其它软键功能来设置各种控制选项。

设定数据					工作区
JOG数据					rai rai
JOG进给率:	0.000	mm/min			计数器
主轴速度:	0.000	грм			
主轴数据					
最小: 最大值:	0.000 3000,000	rpm rpm			
696限制:	100.000	rpm			
DRY					
空运行进给率 :	5000.000	nn/nin			其它的
起始角					
螺纹起始角	0.000	۰			
刀具列表		零点偏移	R参数	设定数据	用 户 数 据

图 4-22 设定数据基本画面

• JOG 进给

在 JOG 运行方式下的进给率 如果该进给率为"零",则控制系统将使用机床数据中所保存的数值。

主轴

主轴转速

• 最小值/最大值

只能在机床数据规定的极限范围内对区域中的主轴转速进行限制(G26 最大/G25 最小)。

4.7 对设定数据进行编程

• 使用 G96 进行限制

在切削速度恒定时(G96)可编程的最大转速限制(LIMS)。

• 用于空运行(DRY)的空运行进给率

在 AUTO 运行方式中如选择空运行进给功能,则程序不按编程的进给率执行,而使用 此处所输入的进给率。

● 螺纹加工起始角(SF)

为了切削螺纹,显示一个主轴起始位置作为起始角度。当重复切削螺纹工作过程时,通过更改角度可以切削多头螺纹。

将光标条定位至需要更改的输入区上,并输入数值。

使用<输入>键或者进行光标移动操作。

软键

加工区域 限制

在几何轴和附加轴上该工作区域限制有效。如果需要使用工作区限制,可以在该对话框 中输入它的数值。 软键<使有效>可以激活/取消光标选定轴的输入值。

	工作区区	限制				
	轴	最小值	最大值	有效 自	尬	沿 署
	X	-100000000.00000	100000000.000000	"	m	有效
	SP	-100000000.00000	100000000.000000		m	
		100000000000000000000000000000000000000	100000000000000000000000000000000000000	Ц		
						"
I					e e RCS E	返回
	刀具列表		零点偏利	R 多 客	t 设 定 数 据	用 户 数 据

图 4-23 工作区域限制

计时器 计数器

4.7 对设定数据进行编程

时间1计数器							
주 네 V M		_					
零件忌数		0					
需要的零件		Ø					
零件数		Ø					
总运行时间	0000 н	00 m	00 s				
程序运行时间	0000 н	00 m	00 s				
进给时间	0000 н	01 м	30 s				
冷启动后的时间	0016 н	34 м					
热启动后的时间	0002 н	31 м					
							«
						RCSA	返回
<u> 川</u> 県 列 表			零月	気路	R参数	设 定	用 户
			1 1111				XX, 340

图 4-24 计时器,计数器

意义:

- 零件总数: 全部已生产工件的数量(总实际值)
- 需要的零件: 所需工件的个数(工件给定值)
- 零件数量: 在这种计数器中记录自开始时刻起所生产的所有工件数量。

说明

通过以下通道专用机床数据设置计数器功能:

- MD27880 \$MC_PART_COUNTER, 激活工件计数器
- MD27882 \$MC_PART_COUNTER_MCODE[0-2],使用用户定义的 M 指令进行工 件计数
- 运行时间总数: NC 程序在 AUTO 运行方式下的总运行时间

在 AUTO 运行方式下,从 NC 启动到程序结束/复位之间所有程序的运行时间累计值。 系统每次上电后计时器自动设为零。

• 程序运行时间: 刀具作用时间

计算所选程序在 NC 启动和程序结束/复位之间的运行时间。 当新的 NC 程序启动时,该定时器被删除。

• 进给运行时间

快速进给无效而刀具有效时,NC 启动和程序结束/复位之间,在所有 NC 程序中测得的进给轴运行时间。当暂停时间生效时,计算被中断。

每次系统以缺省值上电时,计时器自动归零。

4.7 对设定数据进行编程

其它

该功能可以列出控制器中现有的全部设定数据。 按照通用、轴专用和通道专用来区分设 定数据。

通过下列软键功能可以进行选择:

- "通用"
- "轴专用"
- "通道专用"

通用设定数据				
41010 JOG_VAR_INCR_SIZE	0.00000		im 📔	
41050 JOG_CONT_MODE_LEVELTRIGGRD	1		in 📕	
41100 JOG_REV_IS_ACTIVE	еH		im	
41110 JOG_SET_YELO	0.00000	nn/nin	im	
41120 JOG_REV_SET_VELO	0.00000	mm/rev	in	連用
41130 JOG_ROT_AX_SET_VELO	0.000000	rev/min	in	刻 店
41200 JOG_SPIND_SET_VELO	0.00000	rev/min	in	轴
				数据
				2番 2谷
				^{退 退} 数 据
				X7, 34
				搜索
				32 48
				维 选
				搜索
,			÷ ÷	२ संति
	一家占一。	1	RCSE La contra	田山
列表	(偏移) R	参数	女据	数据

图 4-25 一般设定数据

4.8 计算参数 R

4.8 计算参数 R

功能

在 "R 参数"基本画面中列出了控制系统中现有的 R 参数。 全局参数可以由零件程序编程 人员在程序中进行任意设定或者询问,并按需要更改。

操作步骤

OFFSET PARAM

它们位于操作区<参数>中。

R 参数

按下软键"R参数"。 基本画面"R参数"打开。

to Y	~ ℃					
R参数						
RØ	0.00000	R18		0.00000	Г	
R1	0.00000	R19		0.00000	-	-
R2	0.00000	R20		0.00000		
R3	0.00000	R21		0.00000		
R4	0.00000	R22		0.00000		
RS	0.00000	R23		0.00000		
R6	0.00000	R24		0.00000		
R7	0.00000	R25		0.00000		
R8	0.00000	R26		0.00000		
R9	0.00000	R27		0.00000		
R10	0.00000	R28		0.00000		
R11	0.00000	R29		0.00000		
R12	0.00000	R30		0.00000		1.1.1
R13	0.00000	R31		0.00000		搜索
R14	0.00000	R32		0.00000		
R15	0.00000	R33		0.00000		
R16	0.00000	R34		0.00000		
R17	0.00000	R35		0.00000		
					88	
					RCSE	
川県列表			苓 点 偏 移	R参数	设 正 数 据	用 尸 数 据

图 4-26 基本画面"R 参数"

将光标条定位至需要更改的输入区上,并输入数值。

使用 <输入> 键或者移动光标进行输入。

搜索

查找 R 参数。

4.9 用户数据

功能

在循环内部对用户数据进行处理。 可以在需要时对其进行修改。

操作步骤

OFFSET PARAM

它们位于操作区<参数>中。

用户数据

按下"用户数据"软键。循环的"用户数据"基本画面打开。

User data					
_GC_FEIN[0]	0.00000				
_GC_FEIN[1]	0.00000				
_GC_SFEIN[0.0]	0.00000				
_GC_SFEIN[0.1]	0.00000				
_GC_SFEIN[1.0]	0.00000				
_GC_SFEIN[1.1]	0.00000				
_GC_SFEIN[2.0]	0.00000				
_GC_SFEIN[2.1]	0.00000				
_GC_SFEIN[3.0]	FEIN[3.0] 0.00000				
_GC_SFEIN[3.1]	0.00000				
_GC_SFEIN[4.0]	0.00000				
_GC_SFEIN[4.1]	0.00000	Find			
_GC_SFEIN[5.0]	0.00000				
_GC_SFEIN[5.1]	0.00000	Continue			
_GC_SFEIN[6.0]	0.00000	find			
_GC_SFEIN[6.1]	0.00000				
,		<u>\$.</u>			
	4 4 4	RCS			
list	Work I offset a	able data data			

图 4-27 用户数据

将光标条定位至需要更改的输入区上,并输入数值。 使用 <输入> 键或者移动光标进行输入。

搜索

继续 搜索

通过该功能查找用户数据。

参见

用户数据 (页 359)

4.9 用户数据

5.1 手动控制运行

可以在 JOG 和 MDI 运行方式下进行手动控制运行。

				 	,
手动	修整器	工件	成		设
磨削	测定	测定	型		置
	砂轮				
	X1				
	Y1				
	Z1				
					开关 mm > inch
启动 磨削	位置 计算	位置 计算	启动 成型		
<< 返回	<< 返回	<< 返回	<< 返回		<< 返回

图 5-1 JOG 运行方式菜单树,操作区域"加工"

5.2 运行方式 JOG - 操作区域"加工"

5.2 运行方式 JOG - 操作区域"加工"

5.2.1 运行方式 JOG

操作步骤

+X

+Y

-Z

	可以通过机床控制面板上的 <jog>键选择 JOG 运行方式</jog>
JOG	

按下 X 轴、Y 轴或 Z 轴按键可以使相应的坐标轴运行。

持续按着该键,坐标轴就一直连续不断地以设定数据中设定的速度运行。如果设定数据中 此值为"零",则使用机床数据中所存储的值。 如有必要可以使用倍率开关调节速度。

M RAPID

如果同时按下键<快速移动叠加>,并一直按着这两个键,选定的坐标轴就以快进速度运行。

→I [VAR]

在运行方式"增量尺寸"中,能够以选定步进增量方式按相同的操作顺序运行。选定步进量的大小显示在状态区域中。可以再按一次<JOG>将其取消。

在"JOG" 基本画面中显示有位置、进给值、主轴值和当前刀具值。

5.2 运行方式 JOG - 操作区域"加工"

参数

表格 5-1 JOG 基本画面中的参数说明

参数	注释
MCS	显示机床坐标系(MCS)或工件坐标系(WCS)中的现有坐标轴。
х	
Y	
Z	
+X	坐标轴在正方向(+)或负方向(-)运行时,会在相应的位置显示正、负
+Y	号。
-Z	坐标轴到达位置之后不再显示正负号。
位置	在该区域显示机床坐标系(MCS)或工件坐标系(WCS)中的坐标轴当前
毫米	位置。
再定位偏 移	如果坐标轴在"程序中断"状态下以 JOG 方式运行,则在此栏中显示了相对于中断位置各轴所运行的行程。
G 功能	显示重要的 G 功能
主轴 S 转/分钟	显示主轴转速的实际值和额定值

5.2 运行方式 JOG - 操作区域"加工"

参数	注释
进给率 F	显示轨迹进给率的实际值和额定值。
毫米/分钟	
刀具	显示当前所用的刀具及当前的刀沿编号

说明

如果系统中装有第二主轴,工作主轴将以较小的字体显示。窗口中始终只显示一个主轴的数据。

控制系统将显示以下方面的主轴数据:

显示主主轴(放大显示):

- 处于静止状态,
- 主轴启动
- 当两个主轴同时有效时

显示工作主轴(缩小显示):

- 工作主轴启动时

功率条指示了当前有效的主轴。当主主轴和工作主轴同时有效时,功率条将显示主主轴。

软键

说明

有关垂直软键的说明请参见章节运行方式 MDI (页 68)。

^{手动} 磨削 该功能用作使用手轮的磨削(精磨)。该功能不需要使用工件程序。

测定 修整器

该功能可以测定在机床几何轴上工作的修整器的位置。

测定	
工件	

该功能可以为采集工件在机床各个轴的位置。

成 型

该功能可以不使用 NC 程序生成一个成型的"毛坯"磨削砂轮。

5.2 运行方式 JOG - 操作区域"加工"

设置 说明 功能"设置"中的参数对于磨削没有作用。

^{开关} 英寸>毫米 用此功能可以在公制和英制尺寸之间进行转换。

5.2.2 手轮的分配

操作步骤

选择<JOG>运行方式。

手轮

按下"手轮"软键。显示窗口"手轮"。

打开窗口后,在"坐标轴"一栏显示所有的坐标轴名称,它们也同时显示在软键栏中。 使用光标选择所需要的手轮。接着按下所需坐标轴的坐标轴软键,进行分配或取消。 在窗口中会出现符号☑。

M						
N:\SYF\	OSTORE1.SYF			SIE	MENS	MCS
≤ 浸1⊻ ₩CS	<u>SKP DRY ROV MO1 PRI</u> 位置	再定位偏移	工艺数据	Ē		
Х	500.0000	0.0000 mm	T 1		D 1	x
Y	289.2200	0.0000 mm	F	0,000 0.0000	120% mm/min	Y
Ζ	-0.6536	0.0000 mm	S1	0,0 0.0	100% I	z
C04	654	CC0				
001	U34	660	手轮		WCS	
			轴	编号		
				1 2	2	
			Y			
			Z			
			<u> </u>			
					RCS	≪ 返 回
手动磨削	记 录修整器	记录 成型	Ā			设置
		· · · · · ·				

图 5-4 "手轮"菜单窗口

MCS

使用软键"MCS"从机床坐标系或工件坐标系中选择坐标轴用来选通手轮。 当前的设定状态显示在该窗口中。 5.3 运行方式 MDI (手动输入) - 操作区域"加工"

5.3 运行方式 MDI (手动输入) - 操作区域"加工"

功能

在 MDI 运行方式下可以编制一个零件程序加以执行。

⚠️小心
此运行方式中所有的安全锁定功能与自动方式中一样。
而前提条件也必须和全自动运行时一样。

操作步骤

MDA

通过机床控制面板以选择<MDI>运行方式。

<u>M</u>	MDA					
N:\SYF\	OSTORE1.SYF	CO1		SIE	MENS	G功能
■ 浸心 WCS	<u>SKP DRY ROV MOI PRI</u> 位置	56L 剩余行程	工艺数技	E		
Х	500.0000	0.0000 mm	T 1	H	D 1	辅 助 功 能
Y	289.2200	0.0000 mm	F	0,000 0.0000	100% mm/min	全 部 G功能
Ζ	-0.6536	0.0000 mm	S1	0,0 0.0	100% I	轴进给
GØ1 MDI程序;	G54	G6Ø				删除 ^{MDI} 程 序
111 M211 11 11						保存MDI 程 序
1 ¶						相对坐标
		示	教		RĈŚĒ	设置

图 5-5 运行方式 MDI 的基本画面

可以通过键盘输入多个程序段。

按下<NC START>开始执行输入的程序段。 在程序执行时不能再对程序段进行编辑。 执行完毕后,输入区的内容仍保留,再次按下<NC START>键可重新运行该程序段。

5.3 运行方式 MDI (手动输入) - 操作区域"加工"

参数

表格 5-2 MDI 工作窗口中的参数说明

参数	注释
MCS	显示机床坐标系(MCS)或工件坐标系(WCS)中的现有坐标轴。
х	
Z	
+X	坐标轴在正方向(+)或负方向(-)运行时,会在相应的位置显示正、负
-Z	号。
	坐标轴到达位置之后不再显示正负号。
位置	在该区域显示机床坐标系(MCS)或工件坐标系(WCS)中的坐标轴当前
毫米	位置。
剩余行程	在该区域显示机床坐标系(MCS)或工件坐标系(WCS)中的坐标轴的剩
	余行程。
G 功能	显示重要的 G 功能
主轴 S	显示主轴转速的实际值和额定值
转/分钟	
进给率 F	显示轨迹进给率的实际值和额定值,以毫米/分钟或毫米/转为单位。
刀具	显示当前所用的刀具及当前的刀沿编号(T, D)。
编辑窗口	在程序"停止"或"复位"状态时有一个编辑窗口用于输入零件程序段。

说明

如果系统中装有第二主轴,工作主轴将以较小的字体显示。窗口中始终只显示一个主轴的数据。

控制系统将显示以下方面的主轴数据:

显示主主轴:

- -处于静止状态,
- 主轴启动
- 当两个主轴同时有效时

显示工作主轴:

- 工作主轴启动时

功率条指示了当前有效的主轴。

5.3 运行方式 MDI (手动输入) - 操作区域"加工"

软键

G功能

有关水平软键的说明请参见章节"运行方式 JOG - 操作区域'加工'" (页 64)。

G 功能窗口用于显示 G 功能,每个 G 功能分配在一功能组下并在窗口中占有一固定位置。 通过按键"上页"或者"下页"可以继续显示其他 G 功能。再次按下该软键可以关闭窗口。

辅助 功能

该窗口显示了有效的辅助功能和 M 功能。 再次按下该键可以关闭窗口。

显示所有的 G 功能。

轴 进给率

出现"轴进给"窗口。 再次按下该键可以关闭窗口。

删除 MDA 程序

用该功能可以删除程序窗口中的程序段。

MDA 程序 保存

在输入区中输入 MDI 程序在程序目录中的保存名称。 也可以从列表中选择现有的程序 名。

使用 TAB 键在输入栏和程序列表间进行切换。

M	MDA					
N:\SYF\	OSTORE1.SYF			SIE	MENS	
◢复位 ₩CS	SKP DRY ROY M01 PRT S 位置	BL 剩余行程	工艺数据	ŧ		
Х	500.0000	0.000 mm	T 1		D 1	
Y	289.2200	0.0000 mm 存储在・・・	F	0,0000	100%	
Ζ	-0.6536	名称	MP_MDA.MI : NC目录	PF	U	
GØ1	654	N:\MPF				
MDI程序	役	CYCLE.MPF			-	
M2¶		ECO_42.MPF	-			
1		FLACH.MPF				
1 1		TESTASUP.MPF	-			≪ 返 回
		TESTKEGEL . MI	ЪŁ			
					RCS	铺认
		示者	敗 —			设置

图 5-6 保存 MDI 程序

5.3 运行方式 MDI (手动输入) - 操作区域"加工"

MKS/WKS REL 显示 MDI 运行方式的实际值与所选定的坐标系有关。通过该软键进行转换。

参见

运行方式 JOG (页 64)

5.3.1 示教

功能

功能"示教"用于创建并修改一些简单的运行程序段。可以直接将轴位置值接收到待创建或 待修改的零件程序段中。

按下方向键到达轴位置,并且位置值被接收到零件程序中。

操作步骤

在操作区<POSITION>中通过机床控制面板选择<MDA>运行方式。

示教

按下软键"示教"。

子运行方式"示教"下的基本画面如下:

M	MDA					
N:\SYF\	DSTORE1.SYF	CD1		SIE	MENS	工艺
₩CS	位置	剩余行程	工艺数据	Ē		
Х	0.000	0.000 mm	T 1		D 1	快速 移动
Y	0.000	0.000 mm	F	0,000 0.000	50% mm/min	直线
Ζ	0.000	0.000 mm	S1	0,0 0.0	75% I	圆弧
A GØ1	0.000 G500	0.000 mm G60				结束
示教程序	段		I			程序段
T1¶						
M201						
ſ						
==eof==						
					RCS	示教关
		示	教			

图 5-7 "示教"的基本画面

5.3 运行方式 MDI (手动输入) - 操作区域"加工"

一般过程

- 用箭头键选择需要编辑的程序段,或者选择需要在前面添加新的运行程序段的程序 段。
- 2. 选择相应软键。

工艺数据

- "工艺数据"

N:\SYF\USTURE]	RY ROY MO1 PRT SBL		SI	MENS	工艺数据
产生工艺数据程	序段				- 市 浦
进给	mm/min	刀具	T号		移动
主轴	rpm		D号		++ 44
⊕ 右	💽 rev/min	平面	×	. y 🖸	直我
「模式 : 驶入特性	主轴速度同样有效 同样有效	0 0			圆弧
 					接 收 插 入
T11 D11 M201 T					接 收 更 改
==eof==					
		示 教		RCSE	返回

图 5-8 工艺数据

输入相应的工艺数据(例如进给率: 1000)。

如果需要添加新的零件程序段,按下"接收添加"。新的零件程序段插入到用光标选 中的程序段之前。

如果需要修改所选零件程序段,按下"接收修改"。

按下"<<返回"键,返回到"示教"的基本画面中。

快速移动

插入接收

修改接收

返回

- "快速移动"
手动控制运行

5.3 运行方式 MDI (手动输入) - 操作区域"加工"

<u>M</u> ;	MDA					
N:\SYF\	OSTORE1.SYF			SIE	MENS	工艺
◢ 复位	SKP DRY ROY MO1 PRT SE	31.	l	•		数据
WLS	位直	剰余行桯	上之薮扨	5		사는 그는
Х	0.000	0.000 mm	T 1		D 1	丧 虚 移 动
U	0 000	0 000 mm	-	0 000	FOY	
Ť	0.000	0.000 111	F	0,000 0.000	mm/min	直线
7	0 000	0.000 mm	C1	0.0	75%	
Z	0.000		51	0.0	I	圆弧
A	0.000	0.000 mm				
	G500	G60				援 收 任)
不刻程片	* FX					101 八
T19						接收
M201						更改
ſ						
==eof==						
						
					RCS	返回
		示	教			
图 5-9	9 快速移录	h				
		U				

运行轴并通过逼近位置进行快速移动程序段示教。

"直	线"									
Μ	MDA									
N:\	SYF NUSTURE1.5	SAF.	101				SIE	MENS	工	乙据
₩CS	<u>w</u> skp ury	RUY MUI PRIS	剩余行程		ΤŻ	物据			22	JAT .
Х		0.000	0.000	mm	Т	1		D 1	快移	速 动
Y		0.000	0.000	m	F		0,000 0.000	50% mm/min	直	线
Ζ		0.000	0.000	mm	S 1		0,0 0.0	75% I	圆	311
A GØ1	如高和	0.000 G500	0.000 G60	mm					接抵	收入
□□□ 第八 ● T1¶	性疗权								166	~
D1¶ M20¶ ¶									接更	收改
1 ==eo	f==									
								RCSE	返	▣
				示書	敗					

图 5-10 直线

运行轴并使用逼近位置进行直线程序段示教。

- "圆弧"

直线

圆周

5.3 运行方式 MDI (手动输入) - 操作区域"加工"

图 5-11 圆弧

通过圆心和终点进行圆弧程序段示教。

在对话框"快速移动"、"直线"和"圆弧"中的操作

修改接收

返回

- 2. 如果需要添加新的零件程序段,按下"接收添加"。新的零件程序段插入到用光标选中的程序段之前。
- 3. 如果需要修改所选零件程序段, 按下"接收修改"。
- 按下"<<返回"键,返回到"示教"的基本画面中。

示教 OFF

按下"示教 OFF"(参见"基本画面"), 退出子运行方式"示教"。

6

自动运行方式

6.1 自动运行方式

菜单树

加工 补偿	程序 控制	程序段 查找	实时模拟	程序 补偿
	程序 测试	至 轮廓	缩放 自动	
	试运行 进给率	至 终点	缩放 +	
	有条件 停止	不进行 计算	缩放 -	
	跳 转	中 断	显示 	
	单程 序段 精确	查找	显示区域	
	ROV 生效	再 磨削	删除画面	
			光标	
<< 返回	《< 返回	<< 返回	〈〈 返回	<< 返回

图 6-1 自动方式菜单树

前提条件

机床已经按照机床生产厂家的要求调整到自动运行方式。

操作步骤

AUTO

选择自动方式,通过机床控制面板上的<自动方式>按键。

出现"自动方式"基本画面,其中显示有位置、进给值、主轴值、刀具值以及当前的程序段。

6.1 自动运行方式

M	Auto					
N:\MPF\	FLACH.MPF	201	SI	EMENS	G功能	
₩CS	<u> </u>	剩余行程	工艺数据			
Х	500.0000	0.0000 mm	Τ0	D Ø	辅助 功能	
Y	438.5800	0.0000 mm	F 0,000	0 120% 0 mm/min	全 部 G功能	
Ζ	-1.0000	0.0000 mm	S1 🖁	0 100% 0 I	轴进给	
	25 4	200			扫皮	
601 程序码。	654 見示 当前和	G60 建序•FLAC	H.MPF		恒序	
T1D2	III.0 . III.0 . I	• (111				
CYCLE	3446(20.000000) 3493(200.0000000) 1 1	•				
CYCLE	2428(0,0.000000,400	., .000000, 0.00000	0, 200.000000,	100.0000		
CYCLE	2427(0,0.000000,400	.000000, 0.00000	0, 200.000000,	100.0000	MCS/WCS	
1 M17						
		加工时间: 000	10H 00M 00S			
				RCSE		
加 工 偏移值		程序 程序 控制 搜	养段 索	实 时 模 拟	程序 修改	

图 6-2 自动方式基本画面

参数

表格 6-1 工作窗口中的参数说明

参数	注释
MCS	显示机床坐标系(MCS)或工件坐标系(WCS)中的现有坐标轴。
х	
Z	
+X	坐标轴在正方向(+)或负方向(-)运行时,会在相应的位置显示正、负
-Z	号。
	坐标轴到达位置之后不再显示正负号。
位置	在该区域显示机床坐标系(MCS)或工件坐标系(WCS)中的坐标轴当前
毫米	位置。
剩余行程	在该区域显示机床坐标系(MCS)或工件坐标系(WCS)中的坐标轴的剩
	余行程。
G 功能	显示重要的 G 功能
主轴 S	显示主轴转速的额定值和实际值
转/分钟	
进给率 F	显示轨迹进给率的实际值和额定值。
毫米/分钟	
或者 毫米/	
转	

6.1 自动运行方式

参数	注释
刀具	显示当前所用的刀具及当前的刀沿编号(T, D)。
当前程序 段	语句区显示当前有效零件程序的七个连续程序段。程序段的显示受窗口宽度的限制。如果用快速方式处理程序段,则切换到"程序进展"窗口。使用
	软键<程序顺序>可以返回到七程序段显示。

说明

如果系统中装有第二主轴,工作主轴将以较小的字体显示。窗口中始终只显示一根主轴的数据。

控制系统将根据以下条件显示相应的主轴数据:

显示主主轴:

-静止状态下,

- 主轴启动时
- 当两个主轴同时有效时

显示工作主轴:

- 工作主轴启动时

功率条指示了当前有效的主轴。 当主主轴和工作主轴同时有效时,功率条将显示主主轴。

软键

G 功能

打开 G 功能窗口以显示所有生效的 G 功能。

G 功能窗口包含所有生效的 G 功能,每个 G 功能分配在一功能组下并在窗口中占有一固定位置。

6.1 自动运行方式

M	Auto				
N:\MPF	NFLACH.MPF			SIEMENS	G功能
✓ 復位 WCS	SKP_DRY_ROV_M01_PRT_S 位置	BL 剩全行程	Gth能		
Х	500.0000	0.0000 mm	1:601 3:	2: 4:STARTFI	辅 助 功 能
Y	438.5800	0.0000 mm	5: 7:G40 9:	8:654 10:660	全 部 G功能
Ζ	-1.0000	0.0000 mm	13:G710 15:G94	12:0601 14:690 16:CFC 19:6459	轴进给
G01 程序段	G54 昆示 当前和	G60 呈序: FLA(19:BNAT	20:ENAT	程 序 顺 序
T1D2 CYCLE CYCLE CYCLE	2446(20.000000) 2407(300.000000,1,1 2428(0,0.000000,400) .000000, 0.0000	0, 200.000	000, 100.0000	
CYCLE ¶ M17	5427(0, 0.000000, 400	.000000, 0.00000	90, 200.000	000, 100.0000	MCS/WCS 相对坐标
		加工时间: 000	00H 00M 00S		
			1	RCSE	
加 工 偏移值		程序 程序 控制 搜	予段 索	实 时 模 拟	程 序 修 改

图 6-3 G 功能

通过按键<上页>或<下页>可以显示其他的G功能。

辅助 功能

该窗口显示了有效的辅助功能和 M 功能。 再次按下该软键可以关闭窗口。

所有 **G** 功能

显示所有的 G 功能。

轴 进给率

出现"轴进给"窗口。 再次按下该键可以关闭窗口。

程序 顺序

从七段程序转换到三段程序显示。

可以在机床坐标系、工件坐标系或相对坐标系的显示间进行切换。

加工 补偿

返回

显示窗口"加工补偿"

可以输入对每个底座都生效的 Y 轴和 Z 轴精密补偿,或者输入只对单个特殊的底座生效的补偿。

磨削加工底座时,该补偿始终生效。

关闭输入屏幕。 保存补偿。

6.1 自动运行方式

程序 控制

显示所有用于选择程序控制方式的软键(如程序段跳跃,程序测试)。

● "程序测试":

程序测试时,锁止针对轴和主轴的额定值输出。额定值显示"模拟"运行。

- "空运行进给":
 以设定数据"空运行进给"规定的进给值运行。试运行进给替代已编程的运动命令发挥 作用。
- "有条件停止":

功能激活时,总是对于各程序分别停止程序处理,在程序段中,辅助功能 M 01 已编程。

• "跳过":

程序段,在程序段编号前用斜线标记,在程序运行时不考虑(例如"/N100")。

● "精准单程序段":

功能激活时,如下单独处理零件程序段:每个程序段逐段解码,在程序段结束时有一暂停,但在没有试运行进给的螺纹程序段时例外。此时,在运行的螺纹程序段结束时 才实现停止。单段功能只有处于程序复位状态时才可以选择。

• "ROV 有效":

进给补偿开关也适用于快速进给。

<<	
返回	

关闭输入屏幕。

使用程序段查找功能可以找到程序的任意位置。

至轮廓

向前查找程序段并计算 在查找时,如标准程序运行那样进行相同的计算;然而轴不移动。

^{至终点} 向前查找程序段并计算,至程序段终点 在查找时,如标准程序运行那样进行相同的计算;然而轴不移动。

6.1 自动运行方式

不进行 计算程序段查找,不进行计算在程序段查找时不执行计算功能。

中断

光标定位到中断位置所在的主程序段。

搜索

"查找"软键提供有功能"行查找"和"文本查找"。

实时模拟

显示窗口"再磨削"。

输入用于再磨削的补偿值。 在程序中选择程序段后,按下"OK"输入参数。 可对零件程序的执行进行实时模拟(参见"实时模拟(页 87)"章节)。

程序 补偿

在此可以修改错误的程序。 所有修改会立即被保存。

6.2 加工补偿

6.2 加工补偿

功能

可以输入对每个底座都生效的 Y 轴和 Z 轴精密补偿,或者输入只对单个特殊的底座生效的补偿。

磨削加工底座时,该补偿始终生效。

操作步骤

加工 补偿

在自动方式基本画面中显示加工补偿窗口。

M	Auto				
N:\MPF	\FLACH.MPF			SIEMEN	S
◢ 復位 WCS	SKP_DRY_ROV_M01_PRT_9 位置	^{BL} 剩余行程	工艺教	t据	
Х	500.0000	0.0000 mm	Τ0	D Ø	
Y	438.5800	0.0000 mm	F	0,0000 120% 0.0000 mm/min	
Ζ	-1.0000	0.0000 mm	S1	0,0 100% 0.0 I	
G01 加丁志	G54	G60			
2011-1-11	精确补偿	Y		Z	T
全局		0.0	00	0.000	
位于1		0.0	.00 199	0.000	
位于 2		0.0	00	0.000	
位于 4		0.0	00	0.000	
位主 5		0.0	00	0.000	(
				8-8 RCS 8	返回
加工偏移值		程序 程序 控制 搜	^养 段 索	实 时 模 拟	程 序 修 改

图 6-4 加工补偿

6.3 选择、启动零件程序

6.3 选择、启动零件程序

功能

在启动程序之前必须要调整好系统和机床。此时必须遵守机床制造商的安全条件。

操作步骤

AUTO

通过机床控制面板上的 <自动方式> 按键选择自动运行方式。

Program Manager

打开程序管理器。通过软键 "NC 目录" (缺省选择) 或者 "用户 CF 卡" 进入相应的目录。

NC目录	执行
N:\MPF	
名称 大小KB	
	新 建
EXTERN ABARBEITEN.MPF 1	
TASCHENRECHNER.MPF 1	打开
	全选
	1.43
	(m. 141)
	复制
	粘贴
	删除
	Julia Pals
	继续
NC日录 用户 RCS连接 RS232 制造商 USB	
└F 卡 ↓ └── ↓ 驱动器 ↓ 驱动器 ↓	

图 6-5 "程序管理器"基本画面

请将光标条定位到所需的程序上。

使用软键"执行"选择用于执行的程序(参见"外部执行")。在"程序名称"屏幕行中会显示 出所选择的程序名称。

如果有必要,也可以在这时确定执行程序。

执行

程序

控制

6.3 选择、启动零件程序

M	→ Auto				
N: MPFY	FLACH.MPF		SI	EMENS	程序
◢ 復位 ₩CS	SKP DRY ROY M01 PRT S 位置	iBL 剩金行程	「丁学数据		17月 1月
Х	500.0000	0.0000 mm	Τ0	DØ	空运行 进给量
Y	438.5800	0.0000 mm	F 0.00	00 120% 00 mm/min	有条件 停 止
Ζ	-1.0000	0.0000 mm	S1 🖁	0 100% .0 I	跳过
GØ1	G54	G60			精准
程序段。 T1D2	己 示	呈序: FLAC	H.MPF	_	里程序段
T102 CYCLE446(20.000000) CYCLE407(300.000000, 1, 1) CYCLE428(0, 0.000000, 400.000000, 0.000000, 200.000000, 100.0000					
CYCLE ¶ M17	427(0, 0.000000, 400	1.000000, 0.00000	0, 200.000000	, 100.0000	
		加工时间: 000	0H 00M 00S		"
				₽ RCS B	返回
加 工 偏移值		程序 程序 程序 控制 搜	^常 段 索	实 时 模 拟	程序修改

图 6-6 程序控制

使用 <NC 启动> 来执行零件程序。

6.4 程序段搜索

6.4 程序段搜索

操作步骤

前提条件: 程序已经选定,并且控制系统处于复位状态。

程序段 查找

程序段查找可以在零件程序中一直运行,直至找到所需要的位置。可以通过光标直接将 查询目标定位到所需要的零件程序程序段上。

图 6-7 程序段搜索

至轮廓

程序段查找, 直至程序起始

至终点

程序段查找,直至程序结束

程序段查找时不计算

装载中断位置

使用该功能可以依据关键字进行程序段查找。

6.4 程序段搜索

图 6-8 输入查找关键词

使用切换区可以确定,从什么位置开始查找关键词。

查找结果

在"当前程序段"窗口中显示需要的零件程序程序段。

说明

在"外部执行"时,**不能**进行程序段查找。

再磨削

使用"再磨削"功能可以为已经加工的工件再次加工一个"底座",可以带或不带补偿,但使 用相同的工艺值进行加工。

显示窗口"再磨削"。

6.4 程序段搜索

M	→ Auto						
N:\MPF\FLACH.MPF			SI	SIEMENS			
≤ 复位	■ 复位 SKP DRY ROV M01 PRT SBL						
程序段打	要索	I	FLACH.MPF			1	
T1D2							
· ·							
再磨削							
输入补	偿值 。 用≺0K	>启动程	序段查找。				
x	0.0000	mm	未修正任	何轴		O I	
Y	0.0000	mm					
z	0.0000	m					返回
						e e RCSE	确认

图 6-9 再磨削

输入用于再磨削的补偿值。

在转换栏中选择以下:

- 不补偿轴
- 补偿轴
- 加工补偿

在程序中选择程序段后,按下"OK"输入参数。

开始程序段搜索过程。

6.5 实时模拟

6.5 实时模拟

操作步骤

选择了需要执行的零件程序并按下了<NC START>。

实时模拟

使用"实时模拟"功能可在 HMI 上对零件程序的执行进行实时模拟。

图 6-10 "实时模拟"基本画面

通过以下软键可对 HMI 上的实时模拟显示进行调节。

- "自动缩放"
- "缩放+"
- "缩放-"
- "显示…"
 - "所有 G17 程序段"
 - "所有 G18 程序段"
 - "所有 G19 程序段"
- "显示区域"

对该键的描述请见下页。

6.5 实时模拟

- "删除画面"
- "光标"
 - "设置光标"
 - "光标 精", "光标 粗", "光标 极粗"

按下相应软键后,十字光标以较小、中等或较大步长移动。 退出"实时模拟"功能。

显示区域

返回

使用"显示区域"功能可对仿真显示中预先选择的区域进行保存。 可通过"窗口最小/大"功能选择显示区域的菜单

M Auto		
N:\MPF\FLACH.MPF		SIEMENS 保存
≤ 复位 SKP DRY ROV M01 PRT SBL		区域
_程序模拟		
FLACH . MPF	区域	
-	No.	注释
20-	1 AREI	1 窗口
	2 AREI	12 最小/大
10	3 AREI	13
10-	4	
	5	
0-	- 6	删除
-	7	区域
-10-	8	
	9	
20	10	
-20-	11	
	12	返回
Z -40 -20	13	
1 - X		激活
	1 1	読え 区域
加上格	自序 程序段	头 町 桂 序
Im 19 但 15	1. 11 1天 余	医弧 修 叹 、

图 6-11 显示区域"窗口最小"

6.5 实时模拟

Μ	L Auto					
N:\	MPF\FLACH.MPF				SIEMENS	保存
< ∕ 2 €	位 SKP DRY ROV					区域
<u>预</u> 5	E义的显示区域					
No.	注释	+	<u>+</u>	+	<u>+</u>	
1	AREA1	-94.004	494.026	-2.933	322.933	
2	area2	-138.106	97.106	94.827	225.173	窗口
3	area3	-608.530	567.530	-165.867	485.867	最小/大
4						
5						
6						
7						删除
8						区域
9						
10						
11						
12						
13						भू संह ता
14						
15			1			激活
					RCSE	区域
加	I		程序和	呈序段	实 时	程序
偏移	殖		招制	叟 索 🦳	模 拟	修改

图 6-12 显示区域"窗口最大"

设置和保存显示区域的操作步骤

1. 在仿真视图中选择一个区域。

显示区域

2. 按下"显示区域"键。

窗口 最小/大化

- 3. 按下"窗口最小/大",窗口如"显示区域'窗口最大'"图所示以最大方式显示。
- 4. 在"注释"一栏为区域输入名称。
- 5. 按下<Input>键确认输入。

存储区域

6. 按下"保存区域"。

激活或删除区域

显示区域

选择了显示区域。

使用光标键选择需要激活或删除的区域。

平面磨削 编程和操作手册, 07/2009, 6FC5398-5CP10-1RA0

6.5 实时模拟

激活区域

按下"激活区域"或"删除区域"。

删除区域

6.6 停止、中断零件程序

6.6 停止、中断零件程序

操作步骤

使用 **<NC STOP>** 中断零件程序的执行。 使用**<NC START>**可继续执行中断的程序。

使用 <RESET> 可以中断运行的程序。 再次按下<NC START>键可以重新启动中断了的程序,并从头开始运行。 6.7 中断后重新定位

6.7 中断后重新定位

程序中断后(RESET)可以用手动方式(JOG)从轮廓中退出刀具。

操作步骤

选择<AUTO>运行方式。

打开查找窗口,用来装载中断位置。

载入中断点。

至轮廓

启动中断位置查找程序。 返回运行至中断程序段的起始位置。

使用<NC START>继续执行程序。

6.8 中断后重新定位

6.8 中断后重新定位

在程序中断后(**<NC STOP>**)您可以在手动模式(**JOG**)中从工件轮廓上移开刀具。此时控制系统会存储中断位置的坐标。显示已运行的轴的行程差值。

操作步骤

选择<AUTO>运行方式。

使用<NC START>继续执行程序。

重新返回中断位置时,所有的轴将同时移动。这时要确保运行区域畅通。

6.9 执行外部程序

6.9 执行外部程序

功能

在<AUTO>运行方式 > 操作区域<PROGRAM MANAGER>中,有下列接口可用于外部执行程序:

用户 CF 卡

RCS 连接

用于通过网络外部执行的 RCS 连接(仅用于 SINUMERIK 802D sl pro)

厂商驱动器

USB 驱动器

USB 设备

从下列程序管理器的基本画面出发:

用户CF卡	外部
	에 카다
	新目录
extern_abarbeiten.mpf 1	
	打开
	全选
	复制
	粘贴
	删除
<u>الجوم</u>	继续
^{HL} 日求 CF 卡 HL3/L接 H32.32 W的器 驱动器	

图 6-13 "程序管理器"基本画面

6.9 执行外部程序

用垂直软键"外部执行"将所选的外部程序发送到控制系统并使用<NC START>立即执行。 当处理缓冲存储器内容时,会自动重新装载程序。

从用户 CF 卡或 USB 设备外部执行的操作步骤

前提条件: 控制系统处于复位状态。

选择<AUTO>运行方式。

PROGRAM MANAGER

按下机床控制面板上的<PROGRAM MANAGER>键。

用户 CF 卡

按下"用户 CF 卡"或"USB 驱动器"。

进入用户 CF 卡或 USB 驱动器的目录。

请将光标条定位到所需的程序上。

程序被传输至中间存储器,而且被自动选定并显示在程序选择栏中。

CYCLE START

按下<NC START>键。

按下"外部执行"。

开始加工。 可以连续装载程序。

在程序结束时或者在按下<RESET>键,程序会自动从控制系统中退出。

说	明
---	---

在"外部执行"时,**不能**进行程序段查找。

通过网络外部执行的前提

- 在控制系统和外部 PG/PC 之间有 Ethernet 连接。
- 在 PG/PC 上安装了 RCS 工具。

设备有下列条件要求:

6.9 执行外部程序

- 1. 控制系统: (参见"用户管理")
 - 在下面的对话框中进行网络使用的授权:

操作区域<SYSTEM>>"维修信息">"系统通讯">"网络信息">"授权">"建立"

- 2. 控制系统: (参见"用户登录 RCS 登录")
 - 在下面的对话框中为 RCS 连接登录:

操作区域<SYSTEM>>垂直软键"RCS 登录">"登录"

- 3. PG/PC:
 - 起动 RCS 工具。
- 4. PG/PC:
 - 使能驱动器/目录用于网络运行。
- 5. PG/PC:
 - 与控制系统建立 Ethernet 连接。
- 6. 控制系统: (参见"连接和断开网络驱动器")
 - 在下列对话框中连接到 PG/PC 已释放的目录上:
 - 操作区域<SYSTEM>> "维修信息" > "系统通讯" > "网络信息" > "连接" > "RCS 网络" (选择一个空闲的控制系统驱动器 > 输入服务器名称和 PG/PC 的使能目录,例如: "\\123.456.789.0\外部程序")

通过网络外部执行的步骤如下

⋺	
AUTO	

选择<AUTO>运行方式。

Program Manager

外部 加工 按下机床控制面板上的<PROGRAM MANAGER>键。

RCS 连接	

按下"RCS 连接"。

进入 PG/PC 的目录。

请将光标条定位到所需的程序上。

按下"外部执行"。

程序被传输至中间存储器,而且被自动选定并显示在程序选择栏中。

按下<NC START>键。

开始执行。 可以连续装载程序。

在程序结束时或者在按下<RESET>键时,控制系统会自动删除该程序。

说明

只能执行程序,不能在控制系统上进行程序补偿。

6.9 执行外部程序

7

零件编程

7.1 零件编程概述

菜单树

	í 8	又用于 SINUM 802D sl pro	IERIK			
NC 目录	用户 CF 卡	RCS 连接	RS232	厂商 驱动器	USB 驱动器	
执行	外部执行	外部执行		外部执行	外部执行	
新建	新建目录	新建目录		新建目录	新建目录	
打开	打开	打开	发送	打开	打开	
全选	全选	全选	接收	全选	全选	
复制	复制	复制		复制	复制	
粘贴	粘贴	粘贴		粘贴	粘肌	
删除	删除	刪除	故障 记录	删除	删除	
继续	继续	继续	继续	继续	继续	

图 7-1 "PROGRAM MANAGER"菜单树

功能

PROGRAM MANAGER 操作区是控制系统中用于工件程序管理的区域。在其中可以进行新建、打开并编辑、选择并执行、以及复制粘贴操作。

操作步骤

按下<PROGRAM MANAGER>键打开程序目录。

7.1 零件编程概述

NC目录	执行
N:\MPF	
名称 大小KB	à⊷ 3≢
	利廷
EXTERN ABARBEITEN.MPF 1	
TASCHENRECHNER.MPF 1	打开
	全 诜
	复制
	粘贴
	nni eA.
	加味
	继续
	*** ***
NCHI 用户 DCS选择 DS232 制造商 USB	

图 7-2 "PROGRAM MANAGER"基本画面

可以使用光标键在程序目录中进行定位。 输入程序名称的首字母来快速查找程序。 如找 到与此字符一致的程序, 控制系统会自动将光标定位到该程序上。

软键

NC _{目录} 显示 NC 目录。

选择光标选中的程序。此时控制系统会切换至位置显示状态。接下来使用<NC START> 启动该程序。

新建

执行

使用"新建"软键可创建一个新程序。

打开光标所选中的文件进行编辑。

全部 选中 \bigcirc SELECT

选中所有文件用于后续操作。再次按下该软键可以取消选定。

说明

选中单个文件: 将光标移动到相应的文件上,并按下<Select>键。所选中的行会加亮显示。再次按下 <Select>键取消选择。

7.1 零件编程概述

复制

将一个或多个文件记录至待复制文件列表中(剪贴板)。

粘贴

将文件或目录从剪贴板粘贴至当前目录中。

删除

在询问后删除光标选中的文件。如果选中了多个文件,该功能会在询问后将这些文件全 部删除。

按下"确定"执行删除任务,或按下"取消"键取消操作。

更多

使用此软键会显示更多功能。

重命名

打开一个窗口,在其中可之前通过光标选中的文件进行重命名。

在输入新的名称后,按下"确定"键确认输入,或者使用"取消"键放弃重命名。

搜索

共享

该功能会打开一个窗口,在此窗口中将光标在某个程序名称上停留一定时间后,会显示文 件的前七行信息。

打开一个窗口,在其中输入需要查找的文件名称。

在输入名称后,按下"确定"键确认输入,或者使用"取消"键取消操作。

可使用此软键使能选择的目录用于网络运行。

用户 CF 卡

该功能用于划分 HMI 上的窗口。 使用<Tab>键可在窗口间进行切换。

显示所选目录和文件的存储器属性信息。

该功能提供执行(例如复制文件)以及错误执行的 PROGRAM MANAGER 功能的记录。 控制系统重启时会删除此记录。

通过用户 CF 卡读出/读入文件的功能以及外部的执行功能已准备就绪。 当选择该功能时 将显示用户 CF 卡的目录。

零件编程

7.1 零件编程概述

 RCS 连接
 该软键在网络中工作时需要使用。更过相关信息请参见"网络运行"章节(仅用于

 SINUMERIK 802D sl pro)。

RS232

通过 RS232 接口读出/读入文件的功能准备就绪。

发送

该功能将文件从剪贴板发送至连接在 RS232 的 PC 上。

接收

通过 RS232 接口装载文件 接口的设置请参见"操作区域 系统"。传输零件程序时必须以文本格式进行。

故障列表

厂商 驱动器

USB 驱动器 通过厂商驱动器读出/读入文件的功能以及外部的执行功能已准备就绪。 当选择该功能时 将显示厂商驱动器的目录。

通过 USB 卡读出/读入文件的功能以及外部的执行功能已准备就绪。 当选择该功能时将 显示 USB 设备的目录。

零件编程 7.2 输入新程序

7.2 输入新程序

操作步骤

PROGRAM MANAGER

选择了 PROGRAM MANAGER 操作区域。

NC ^{目录} 新建

通过软键 "NC 目录" 选择新程序的存储位置。 按下"新建"。可选择执行以下操作:

NC目录	新建
N:\MPF	
	新目录
BARBEITEN.MPF 1	
EXTERN_ABARBEITEN.MPF 1	
新程序:	
请输入名称!	
	中断
	,
) 분수 전문	确认

按下软键"新建目录",显示创建新文件夹的对话窗口。

图 7-3 新建程序

输入名称并按下"确定"键确认。

新建 文件

ок 🗸

按下软键"新建文件",显示创建新文件的对话窗口。 输入新的主程序或子程序。 主程序 扩展名 .MPF 会自动输入。 而子程序扩展名 .SPF 则必须与文件名一起输入。 按下软键"确定"确认输入。 生成新的零件程序文件并自动打开编辑窗口。

Ⅰ 中断

使用"取消"可退出新程序的创建,并关闭窗口。

7.3 编辑零件程序

7.3 编辑零件程序

功能

只有当零件程序不处于执行状态时,才可以对其进行编辑。 零件程序中的所有修改会被立即保存。

图 7-4 程序编辑器基本画面

零件编程

7.3 编辑零件程序

菜单树

图 7-5 "程序"菜单树

操作步骤

PROGRAM MANAGER

在 PROGRAM MANAGER 操作区域中选择需要编辑的程序。

打开

按下软键"打开"。所选的程序打开。

软键

编辑文件

^{块选中} 该功能可以选中当前光标位置之前的文本段落。(也可以使用: <CTRL+B>)

零件编程

7.3 编辑零件程序

块复制	该功能可以将选中的文本复制到剪贴板中。(也可以使用: <ctrl+c>)</ctrl+c>
块插入	该功能可以将文本从剪贴板中粘贴至当前的光标位置。(也可以使用: <ctrl+v>)</ctrl+v>
块删除	该功能可以删除选中的文本。(也可以使用: <xtrl+x>)</xtrl+x>
搜索	使用软键"查找"可以在所显示的程序文件中查找字符串。 在输入栏中输入所要查找关键字并按下软键"OK"开始进行查找。按下"取消"可以关闭对话
	囱口,
编号	该功能可以替换从当前光标位置到程序结束的程序段号。
 磨削 循环	参见章节"循环" (页 165)
重新 编译	为了进行重新编译,必须将光标置于程序中的循环调用行上。功能会将循环名称解码,

为了进行重新编译,必须将光标置于程序中的循环调用行上。功能会将循环名称解码, 并准备好带有相应参数的屏幕窗口。如果参数处于有效范围之外,则功能会自动使用缺 省值。在屏幕窗口关闭之后,将用校正过的值来代替原始参数块。

说明

只能对自动生成的块/程序段进行重新编译。

8

系统

8.1 操作区域"系统"

功能

在操作区域 SYSTEM 中包含了所有用于设置和分析 NCK 、PLC 与驱动的功能。 根据所选择的功能,可以在水平软键条和垂直软键栏之间进行切换。在下面的菜单树中 仅显示水平软键。

菜单树

调试	机床 数据	维修 信息	PLC	调试 文件	
NC	通用 MD	服务 轴	STEP 7 连接	802D 数据	
PLC	轴 MD	服务 驱动装置	PLC 状态	用户 CF 卡	
HMI	通道 MD	信息 外部总线	状态 列表	RCS 连接	
	驱动 MD	通讯 系统	PLC 程序	RS232	
		服务概览	程序 列表	厂商 驱动器	
	显示 MD			USB 驱动器	
	Servo trace	Servo trace		厂商存档	
		Version	编辑 PLC 报警文本		

图 8-1 "SYSTEM"菜单树

操作步骤

通过 CNC 全键盘切换至<SHIFT>和<SYSTEM>操作区,并显示基本画面。

系统

8.1 操作区域"系统"

图 8-2 "SYSTEM"操作区基本画面

软键

下面对基本画面中的垂直软键进行说明。

口令 设置

"设定口令"

在控制系统中口令分为不同等级,它们分别具有不同的存取权限:

- 系统口令
- 制造商口令
- 用户口令

具有相应的存取等级才能修改特定的数据。 如果不知道口令,就不具有存取权限。

说明

参见 SINUMERIK 802D sl 参数手册
系统 8.1 操作区域"系统"

× 5	×.					
机床配置						
号	轴索引	名称	轴类型	驱动型	₹ 🛛	
1	1	X1	直线轴	1		
2	2	Z1	直线轴			
3	3	SP	主轴			
请输入	入口令!					
<u> </u>						
						~
						中断
						_
存取级	别:专家模式				RCS	接收

图 8-3 输入口令

按下软键"接收"设置口令。

使用"取消"不执行任何动作而返回至"系统"基本画面。

口令 修改

"修改口令"

× 50	× Co					
机床配置						
뮥	轴索引	名称	轴类型	驱动-	号 🚺	
1	1	X1	直线轴	1		
2	2	Z1	直线轴			
3	3	SP	主轴			
请输	∖新口令!					キ宏様ナ
						マネ伝氏
						制造商
						田戸
						74.7
						×
						中断
	et 1 1 1446 15					V
存取级	别:专家模式				RCSE	接收

根据各自的存取权限,在软键栏中提供有不同的口令更改方式。

借助软键选择口令等级。 输入新的口令并按下"接收"结束输入。 系统会再次询问新口令 以进行确认。

按"接收"结束口令更改。

图 8-4 修改口令

8.1 操作区域"系统"

使用"取消"可以不执行动作返回至基本画面。

存取权限复位

网络中的用户登录

Change language

用"更改语言"来选择操作界面语言

图 8-5 操作界面语言

用光标键选择语言并按下"确定"接收。

说明

选择了新语言后,HMI 会自动重启。

Service language

用"语言服务"使操作界面语言始终为"英语"。

再次按下软键"语言服务",恢复最后更新的语言(例如:"简体中文")。

说明

"*"表示已经用过的语言。

"数据备份"

该功能可以将易失存储器中的内容备份至非易失区域中。

数据 备份 前提条件:没有正在执行的程序。

在备份数据的过程中,不允许进行任何操作!

对 NC 和 PLC 数据进行备份。 驱动数据则不进行备份。

说明

可通过以下操作调用备份的数据:

- 在控制系统启动时按下<SELECT>键。
- 在设置菜单中选择"Reload saved user data(重新载入备份的用户数据)"。
- 按下<INPUT>键。

说明

备份的数据可通过 <SYSTEM> > "调试" > "使用备份的数据启动"重新调用!

8.2 SYSTEM - "调试"软键

8.2 SYSTEM - "调试"软键

调试	调试
NC	选择 NC 启动模式。
	使用光标选择所需的模式
	 正常启动 系统重新启动
	 使用缺省数据启动 显示机床数据复位为缺省值(恢复出厂设置)
	 使用备份数据启动 以上一次备份的数据重新启动(参见"数据备份")
PLC	PLC 可以按下列模式启动:
	● 重新启动
	● 清零
	另外在启动时还可以使用 调试模式 。
НМІ	选择 HMI 启动模式。
	使用光标选择所需的模式
	 正常启动 系统重新启动
	 使用缺省值启动 使用缺省值重新启动(恢复出厂设置)
ок	按下"确定"将控制系统复位,并通过所选择的方式重新启动。
	按下返回键不执行操作返回系统基本画面。

<u>系统</u> 8.3 SYSTEM - "机床数据"软键

8.3 SYSTEM - "机床数据"软键

文献参考

对机床数据的描述请参见以下生产商文献: SINUMERIK 802D sl 参数手册 SINUMERIK 802D sl 功能手册 车削、铣削和步冲

机床数据

机床 数据

修改机床数据对机床会有重大影响。

10088	REBOOT_DELAY_TIME	0.20000	5	50
1	2	3	1	5
	2	5	4	5

图 8-6 机床数据行的结构

表格 8-1 插图

编号	含义								
1	机床数据编号								
2	名称								
3	值								
4	单位								
5	有效性 so 立即生效								
		cf	确认后生效						
		re 复位							
		ро	上电后生效						

/ 小心

参数设定出错可能会损坏机床。

机床数据可以分为不同的数据组。

8.3 SYSTEM - "机床数据"软键

通用机床数据

通用 MD

打开"通用机床数据"窗口。可以使用翻页键向前和向后翻动屏幕页。

通用机床数据				
10000 AXCONF_MACHAX_NAME_TAB[0]	X1		po 📔	
10000 AXCONF_MACHAX_NAME_TAB[1]	Z1		ро	
10000 AXCONF_MACHAX_NAME_TAB[2]	SP		ро	
10000 AXCONF_MACHAX_NAME_TAB[3]	A1		ро	
10000 AXCONF_MACHAX_NAME_TAB[4]	B1		ро	
10000 AXCONF_MACHAX_NAME_TAB[5]	PLCX1		ро	-
10074 PLC_IPO_TIME_RATIO	1		ро	
10075 PLC_CYCLE_TIME	0.009000		ро	
10088 REBOOT_DELAY_TIME	0.200000	s	im	NCK信息
10131 SUPPRESS_SCREEN_REFRESH	2		po	(上由)
10132 MMC_CMD_TIMEOUT	3.000000	s	ро	
10136 DISPLAY_MODE_POSITION	0		re	搜索
10192 GEAR_CHANGE_WAIT_TIME	10.000000	s	ро	12 14
10200 INT_INCR_PER_MM	1000.000000		ро	继 缢
10210 INT_INCR_PER_DEG	1000.000000		ро	搜索
10240 SCALING_SYSTEM_IS_METRIC	1		re	
2			rcs &	选择组
通用 轴 通 道 驱动		显 示	伺服	

图 8-7 通用机床数据

在控制系统上触发热启动。

查找此关键字的下一个匹配项。

搜索

"查找"

键入所要查询的机床数据编号或名称(或者名称的一部分),并按下"确认"键。 光标会跳转到所要查找的数据上。

继续 搜索

选择组

使用该功能可以为有效的机床数据组中选择不同的显示过滤器。以下软键可供使用:

- "专家": 选择专家模式中的所有数据组进行显示。
- "过滤器生效": 激活所选择的数据组。 退出该窗口后,在机床数据画面中只能看见所选择的数据。

8.3 SYSTEM - "机床数据"软键

- "全部选择": 选择所有数据组进行显示。
- "全部取消": 取消选择所有数据组。

选择组	专家
□ 专家模式	[
滤波器有效	滤波器
□	有双
□机床几何数据	
□速度/加速度/冲击	全部进场
□ 监控功能/限制	129 1 1
□主轴 ■ France Market	全部
	카지 1日
口状态数据	
□修正/补偿	
[二丁] 口工艺功能	
□标准机床	中断
Rož	确认
图 8-8 显示过滤器	

轴专用机床数据

轴 MD

打开"轴专用机床数据"窗口。 软键条上会增加软键"轴+"和"轴-"。

轴专用机床数据	X1	1	轴 +
30100 CTRLOUT_SEGMENT_NR[0]	5	po 📔	
30110 CTRLOUT_MODULE_NR[0]	1	ро	
30120 CTRLOUT_NR[0]	1	po	钿 -
30130 CTRLOUT_TYPE[0]	1	po	
30132 IS_VIRTUAL_AX[0]	0	po	
30134 IS_UNIPOLAR_OUTPUT[0]	0	ро	
30200 NUM_ENCS	1	po	副業
30220 ENC_MODULE_NRE01	1	ро	vhā Sal
30230 ENC_INPUT_NR[0]	1	ро	NCK信心
30240 ENC_TYPE[0]	1	ро	(上电)
30242 ENC_IS_INDEPENDENT[0]	0	cf	
30250 ACT_POS_ABS101	-1132451.000000	ро	搜索
30260 ABS_INC_RATIO[0]	4	ро	
30270 ENC_ABS_BUFFERING[0]	0	ро	继续
30300 IS_ROT_AX	0	ро	搜索
30310 ROT_IS_MODULO	0	ро	
°		₽.₽ RCS E	选择组
· 通 用 · · · · · · · · · · · · · · · · · ·	星 示 星 机床数据	伺 服 轨 迹	

图 8-9 轴专用机床数据

显示轴1的相关数据。

轴 +

使用"轴+"和"轴-"可以切换至下一个轴或前一个轴的机床数据区。

8.3 SYSTEM - "机床数据"软键

更新

机床数据的内容会相应更新。

通道专用机床数据

打开"通道轴专用机床数据"窗口。可以使用翻页键进行前后翻页。

通道专用机床数据 20050 AXCONF_GEOAX_ASSIGN_TAB[0] 1 po 1	
20050 AXCONF_GEOAX_ASSIGN_TAB[0] 1 po	
20050 AXCONF_GEOAX_ASSIGN_TAB[1] 2 po	
20050 AXCONF_GEOAX_ASSIGN_TAB[2] 3 po	
20060 AXCONF_GEOAX_NAME_TAB[0] X po	
20060 AXCONF_GEOAX_NAME_TAB[1] Y po	
20060 AXCONF_GEOAX_NAME_TAB[2] z po	
20070 AXCONF_MACHAX_USED[0] 1 po	
20070 AXCONF_MACHAX_USED[1] 2 po	
20070 AXCONF_MACHAX_USED[2] 3 po	NCK信心
20070 AXCONF_MACHAX_USED[3] 4 po	(上由)
20070 AXCONF_MACHAX_USED[4] 5 po	
20070 AXCONF_MACHAX_USED[5] 0 po	搜 索
20080 AXCONF_CHANAX_NAME_TAB[0] X po	324 34
20080 AXCONF_CHANAX_NAME_TAB[1] Y po	维续
20080 AXCONF_CHANAX_NAME_TAB[2] Z po	搜索
20080 AXCONF_CHANAX_NAME_TAB[3] SP po	
	选择组
通用 轴 通 道 驱动器 显示 示 数据 机床数据 机床数据 数 紙 机床数据 轨 迹	

图 8-10 通道专用机床数据

SINAMICS 驱动机床数据

驱动 MD

打关驱动器机床数据的对话框。

第一个对话窗口显示了当前的配置以及控制单元、供电单元和驱动单元的状态。

系统 8.3 SYSTEM - "机床数据"软键

图 8-11 驱动机床数据

显示参数

为了列出参数,请将光标放置到需要的单元上并按下软键 <显示参数>。可以在 SINAMICS 驱动器文献中查找参数说明。

A 2	20 A			
驱动器数排	Ē	CU_	_I 1	驱动
参数	标识符	值	单位	灯家*
r0002	控制单元运行显示	Ø		驱动
p0003	BOP存取权限级别	1		灯家-
p0004	BOP 显示过滤器	0		
p0009	设备调试参数过滤器	0		
p0015	宏指令驱动设备	0		保存
r0018	中央控制单元固件版本	2405700		29 1 00
r0052	状态字1 (ZSW1)有效	0		值 bey/bin
p0092	同步PROFIBUS运行预占用/检查	1		
p0097	选出驱动对象类型	1		搜索
r0098[0]	DRIVE-CLiQ 插座 X100	0		
r0098[1]	DRIVE-CLiQ 插座 X101	17891328		继续
r0098[2]	DRIVE-CLiQ 插座 X102	0		12 7
<u>,</u>			음 음 RCS 본	返回
通 用 数 据	轴 通 道 <mark>驱动器</mark> 机床数据机床数据机床数据	显 机床数	示 伺服 据 轨迹	

图 8-12 参数表

驱动对象 +

切换至相应的驱动对象。

驱动对象

十六进制/ 二进制显示值

在提示行中分别十六进制和二进制显示所选择的值。

8.3 SYSTEM - "机床数据"软键

搜索

在参数列表中查找输入的关键字。

继续 搜索

显示机床数据

打开"显示机床数据"窗口。可以使用翻页键进行前后翻页。

1	Auto			
显示	1.床数据			修改
203	DISPLAY_RESOLUTION	3	im 📗	颜色
204	DISPLAY_RESOLUTION_INCH	4	in	
205	DISPLAY_RESOLUTION_SPINDLE	1	im	
207	USER_CLASS_READ_TOA	3	im	
208	USER_CLASS_WRITE_TOA_GEO	3	in	
209	USER_CLASS_WRITE_TOA_WEAR	3	im	
210	USER_CLASS_WRITE_ZOA	3	im	
212	USER_CLASS_WRITE_SEA	7	im	
213	USER_CLASS_READ_PROGRAM	7	im	
214	USER_CLASS_WRITE_PROGRAM	3	im	
215	USER_CLASS_SELECT_PROGRAM	3	im	
218	USER_CLASS_WRITE_RPA	3	im	搜索
219	USER_CLASS_SET_V24	3	im	
221	USER_CLASS_DIR_ACCESS	3	im	维 续
222	USER_CLASS_PLC_ACCESS	3	im	搜索
223	USER_CLASS_WRITE_PWA	7	im	
通月数打	月 轴 通 道 驱动器 居 机床数据 机床数据 数 指	器 显 机	示 伺 服 ※数据 轨 迹	

图 8-13 显示机床数据

通过"软键颜色"和"窗口颜色"功能,用户可进行自动以颜色设置。 显示的颜色由红、绿、 蓝组合而成。

窗口"修改颜色"中显示了输入区中的当前设定值。通过改变该值获得所需要的颜色。此 外还可以修改亮度。

在输入结束后会短暂显示新的混合比例。可以使用光标键在各输入区之间进行切换。

按下"确定"软键接收所需的设置并关闭对话窗口。 使用软键"取消"关闭对话窗口而不保存 修改。

修改提示区和软键区的颜色。

颜色 更改

颜色 软键

<u>系统</u> 8.3 SYSTEM - "机床数据"软键

图 8-14 编辑软键颜色

颜色 窗口

该功能可以修改对话窗口的外框颜色。

软键功能"有效窗口"用来对聚焦窗口进行设置,而功能"无效窗口"则用来设置当前无效的窗口。

图 8-15 编辑外框颜色

8.4 SYSTEM - "维修信息"软键

8.4 SYSTEM - "维修信息"软键

维修 显示

显示"维修信息"窗口。

下图显示了"系统通讯"功能的基本画面。

图 8-16 控制系统信息的基本画面

在该窗口中显示有关轴驱动的信息。

使用软键"轴+"或"轴-"可以显示另外的信息。使用该键可以显示后一轴或前一轴的数值。

服务 驱动装置

该窗口显示数字驱动信息

信息 外部总线

维修 控制系统

按下该软键激活以下功能的窗口:

• "网络信息"(参见"网络运行"章节)

该窗口显示外部总线设置的相关信息。

- "操作记录"(参见"操作记录"章节)
- "防火墙服务"(参见"网络运行"章节)
- "直接连接"(参见"网络运行"章节)
- "MSG 服务"(参见"MSG 服务"章节)

服务 概览

窗口中显示以下信息

8.4 SYSTEM - "维修信息"软键

- 机床轴分配 <=> 通道轴 <=> 驱动编号
- NC 和驱动的使能状态
- 驱动状态,例如就绪,故障和警告

该窗口中提供示波器功能用于优化驱动(参见"伺服跟踪"章节)。

版本

Servo

trace

在该窗口中显示版本号以及各个 CNC 组件的产生日期。 通过此窗口可选择以下功能(参见"版本"章节):

- "HMI 详细信息"
- "许可证密钥"
- "选项"
- "另存为…"

显示的版本以文本文件保存

8.4 SYSTEM - "维修信息"软键

8.4.1 操作记录

运行 记录器

设置"运行记录器"功能用于维修。运行记录器文件的内容只能在 HMI 上通过系统口令输出。

图 8-17 运行记录器

另存为

但是也可通过软键"另存为"将文件在 CF 卡或 USB 设备中输出,而不使用系统口令。 如有疑问请联系热线(联系方式请参见"前言"中的"技术支持"章节)。

8.4 SYSTEM - "维修信息"软键

8.4.2 伺服跟踪

Servo trace

为了优化驱动提供有示波器功能,它实现了以下图形显示:

- 速度设定值滤波器
- 轮廓偏差
- 跟随误差
- 位置实际值
- 位置设定值
- 粗准停/精准停

可以按不同的标准启动记录,保证与内部控制系统状态同步记录。必须使用"信号选择"来进行设定。

对记录结果进行分析时可以使用如下功能:

- 改变横坐标和纵坐标刻度线,
- 使用水平刻度线和垂直刻度线测量某个值,
- 测量两个刻度线之间横坐标差值和纵坐标差值。
- 把结果作为一个文件存储到零件程序目录中。 然后可以使用 RCS802 或者 CF 卡将其 读出,并通过 MS Excel 进行编辑加工。

图 8-18 伺服跟踪基本画面

图中标题栏内包含有当前横坐标刻度和标记线差值。

在上图中可以使用光标键在可见区域内移动。

8.4 SYSTEM - "维修信息"软键

选择信号

此菜单用来为测量通道进行参数设定。

信号选择										
轨迹:	轴			信号类型			状态	÷		
轨迹 1	X O	PS=₩Ź	り速度	设定值(NCU)		0	开	0		
轨迹 2	X O	PS=\$⊠≵	力速度	设定值(NCU)		0	开	0		
轨迹3	X O	PS=\$Ø₫	り速度	设定值(NCU)		0	关	O		
轨迹4	X O	PS=\$Ø₫	力速度	设定值(NCU)		0	关	0		
参数										
设置参数为	•		绀	沛1						
KES M/5	•		-776							
测量时间:		1000	MS	触发类型:	立即开如	台		0		
										中断
								گ RCS	ĝ	接收
			-			-	_			P

图 8-20 选择信号

- 坐标轴选择: 在"坐标轴"转换区域可以选择不同的坐标轴。
- "信号类型":

跟随误差
调节器差值
轮廓偏差
位置实际值
速度实际值
速度设定值
补偿值
参数程序段
位置设定值调节器输入端

8.4 SYSTEM - "维修信息"软键

系统

速度设定值调节器输入端 加速度设定值调节器输入端 速度预调值 信号精准停 信号粗准停

● "状态":

On: 该通道中的记录 Off: 通道无效

在屏幕的下半部,可以为通道1设定测量时间和触发的参数类型。所有其它的通道均采 用此设置。

- 确定测量时间: 在此输入区中直接给定测量时间,以毫秒为单位(最大为 6133 毫秒)。
- 选择触发条件: 将光标移到触发类型条件上, 通过触发按键对条件进行选择。
 - 无触发,即按下软键启动后就直接开始测量
 - 正沿触发
 - 负沿触发
 - 精准停到达
 - 粗准停到达

用软键 "V 标记 ON" / "V 标记 OFF" 来打开或关闭垂直辅助线。 要在垂直轴上生成何种信 号,通过功能"信号选择"来确定。

用软键 "T标记 ON" / "T标记 OFF"来打开或关闭时间轴的水平辅助线。

固定 V 标记

显示跟踪

叶问

V 标记 OFF

T 标记 OFF

利用标记线可以计算水平方向或垂直方向的差值。为此只需把刻度线定位到起始点,并 按下软键 "记录 V 标记"或者 "记录 T 标记"。这时在状态栏中会显示出起始点和当前标记 位置之间的差值。而软键名则变为"释放 V 标记"或者"释放 T 标记"。

该功能可以打开下一个菜单,其中提供有用于显示/隐藏图形的软键。如果软键背景为黑 色,则显示所选轨迹通道的图形。

h.) [b]	
刻度 +	借助该功能可以扩大或缩小时间基线。

8.4 SYSTEM - "维修信息"软键

垂直 刻度 +

借助该功能可以扩大或缩小分辨率精度(振幅)。

标记 步长

借助该功能可以确定标记线的步距增量。

图 8-21 标记步长

通过移动光标键,按增量的步距移动标记线。较大的步距增量可以在输入区进行设置。 该值说明,每进行一次 "SHIFT" + 光标移动时标记会移动多少刻度单位。如果标记线移 动到图形的边缘,则水平方向或垂直方向的下一个刻度线会自动跳出。

文件

该功能用于保存或装载轨迹参数。

8.4 SYSTEM - "维修信息"软键

在文件名区域填写需要的文件名,无需扩展名

通过软键"保存"将数据保存在零件程序目录中指定文件名下。 然后可以读出文件,并用 MS Excel 对数据进行编辑。

通过软键"装载"加载指定的文件并以图形方式显示数据。

8.4 SYSTEM - "维修信息"软键

8.4.3 版本/HMI 详细信息

版本

在该窗口中显示版本号以及各个 CNC 组件的产生日期。

版2本 BOARD: SZVSSBM00031 - 6FC5370-0AA00-3AA0 Hardware-Version: 02.00.00 Hardware-Revision: B	详细信息 许可证
Software: 802D sl T/M pro Version: 01.04.05.00 InternalVersion: 01.40.38.00 BIOS-Version: 00.00.03.01	密码
HMI-Version: 05.86.27.80 Base System 67.10.00 09/01/09 Numeric ContSIG7.10.00E 67.10.00 23/03/09 NCKS802d-tn3 67.10.00 03/23/09	
PLC System E 04.05.06 28/01/09 PLC Application : Hannelore_Mitzeichnen_mod_RF_02_02_09.ptp 11:27 02/02/2009 Subroutine Library 802D s1 V02.00.10	日本头
確認 課 通 通 通 通 通 通 通 通 通 通 通 通 通 通 通 通 1 <th1< th=""> 1 <th1< th=""> <th1< th=""></th1<></th1<></th1<>	■ 万仔 内 ··· 版 本

图 8-23 版本

说明

版本画面中显示的版本状态为示例。

将"版本"窗口中的内容保存为文本文件。可选择保存的目标位置(例如"用户 CF 卡")。

HMI 详细信息

另存为

菜单区"HMI 详细资料"专门用于维修情况,并且要求达用户密码等级才允许使用。将所有的操作组件程序按其版本号进行排列。通过重新装载软件组件可以相互区别各版本号。

<u>系统</u> 8.4 SYSTEM - "维修信息"软键

\checkmark			
DLL 详细信息			登记
DLL 名	DLL 版本	接口版本	详细信息
mmc0.exe	V05.06.15.00 08/08/28		
accsrv.dll	V05.06.15.00 08/08/28	Y05.06.15.00 08/08/28	
aggr_man.dll	V05.06.15.00 08/08/28	V05.06.15.00 08/08/28	
alm.dll	V05.06.15.00 08/08/28	V05.06.15.00 08/08/28	字 体
cmparser.dll	V05.06.15.00 08/08/28	V05.06.15.00 08/08/28	详细信息
codegen.dll	V05.06.15.00 08/08/28	V05.06.15.00 08/08/28	
dcom.dll	V05.06.15.00 08/08/28	V05.06.15.00 08/08/28	
dg.dll	V05.06.15.00 08/08/28	V05.06.15.00 08/08/28	
dm.dll	V05.06.15.00 08/08/28	Y05.06.15.00 08/08/28	
fileio.dll	V05.06.15.00 08/08/28	V05.06.15.00 08/08/28	
fke.dll	V05.06.15.00 08/08/28	V05.06.15.00 08/08/28	
gl.dll	V05.06.15.00 08/08/28	Y05.06.15.00 08/08/28	
hlp.dll	V05.06.15.00 08/08/28	V05.06.15.00 08/08/28	
hz.dll	V05.06.15.00 08/08/28	V05.06.15.00 08/08/28	
joblistman.dll	V05.06.15.00 08/08/28	V05.06.15.00 08/08/28	
ld.dll	V05.06.15.00 08/08/28	Y05.06.15.00 08/08/28	
ma.dll	V05.06.15.00 08/08/28	V05.06.15.00 08/08/28	"
		¢.¢ RCS≧	返回

图 8-24 "HMI 版本"菜单区

记录 详细信息

"记录详细信息"功能列出了对需要运行的程序的硬键分配(操作区域键"POSITION"(加工), "OFFSET PARAM"(参数), "PROGRAMM"(程序), PROGRAM MANAGER (程序管理器)等)。每栏的含义将在下表中进行说明。

2							
Regist	ry的详细	言息					
启动する	作区域						
М						1	更改 起始范围
Area		DLL Name	Class Name	Text Name	Access		
M	ma.dll		maschine		A11		
	pa.dll		parameter		A11		
\Box	pr.dll		programm		A11		
	pm.dll		prognan		A11		
2	dg.dll		diagnose		A11		
\wedge	alm.dll		alarm		A11		
,					ے RCS	ŝ	返回

说明

系统启动后,控制系统会自动启动<POSITION>操作区。如果需要其它启动特性,可通过"启动操作区"功能定义另一个启动程序。

启动操作区在"记录详细信息"上方的表格中显示。

8.4 SYSTEM - "维修信息"软键

字体 详细信息

使用"字体详细信息"功能可列出已加载字符程序段的数据。

字体详细信息					
当前语言是 Chinese					
Font - Name	Version	CP_		Γ	
Chinese Simplified	0	936	Chinese Simplifie	ed	
Gulim	3	949	Korean Wansung		
MingLiU	3	950	Chinese Tradition	al	
MMC 8×12	3	1250	Latin 2,Central Eur	rope	
MMC 8×12	3	1251	Cyrillic		
MMC 8×12	3	1252	Latin 1 (ANSI)		
MMC 8×12	3	1254	Turkish		
1					_ « _
				RCS	返回

图 8-26 字体详细信息

输入许可证密钥。

Ref Point		
成本 BOARD: Hardware-Version: Hardware-Revision:	SZVSSBM00031 - 6FCS370-0AA00-3AA0 02.00.00.00 8	
Software: Version: InternalVersion: BIOS-Version:	882D sl T/M pro 01.04.05.00 01.40.41.00 00.00.03.01	
HMI-Version:	05.06.30.00	
许可证密码		
Input the license key:		
CF卡序列号: NCU组件的订货号:	00001011100000046698 6FC5810-3Y614-5YA0	★ 中断
	문음 RCS법	确认

文献参考

SINUMERIK 802D sl 操作手册,车削、铣削、磨削和步冲; SINUMERIK 802D sl 中的授 权许可

选项

设置授权许可选项。

系统 8.4 SYSTEM - "维修信息"软键

图 8-28

文献参考

SINUMERIK 802D sl 操作手册,车削、铣削、磨削和步冲; SINUMERIK 802D sl 中的授 权许可

NCK 复位 (po)

在控制系统上触发热启动。

8.4 SYSTEM - "维修信息"软键

8.4.4 MSG 服务

服务 MSG

使用"MSG 服务"功能可通过以下接口输出信息文本/信息:

- 通过 RS232 接口 (V24) 作为无记录数据流输出
- 以文件形式输出

信息文本/信息包括:

- 报警
- MSG 指令的文本

信息文本/信息在零件程序中通过预设的句法编程。下表中各输出类型对应的句法:

表格 8-2 信息文本/信息句法

输出	句法 ("<接口>: 信息文本")
通过 RS232 接口(V24)	MSG ("V24: 信息文本")
以文件形式	MSG ("File: 信息文本")
HMI 上的报警行	MSG ("报警文本")

MSG 文本输出可通过 **MSG** 指令和输出接口的参数设置定义。 输出报警时只需注意输出接口。

输出指令行"发生 MSG 指令处理故障"时,可在操作区<SYSTEM>>"维修信息">"系统通讯">"MSG 服务">"故障记录"下对故障记录进行分析。

图 8-29 MSG 服务对话框

系统 8.4 SYSTEM - "维修信息"软键

对通过 RS232 接口进行的输出进行设置

设置 RS232

RS232 输出接口设置

图 8-30 RS232 接口设置对话框

通过选择框"通过 RS232 发送"可激活/取消激活接口上的信息发送。接口取消激活时,忽略到达接口的信息!

说明

在通过串行接口(RS232)传输文件时,请注意 RS232 通讯的传输结束符号(与 HMI 上 的 RS232 通讯设置相似)。

此外可为通过 RS232 进行的发送设置,在哪些事件中发送信息:

- 零件程序中编程的信息
- 发生报警

按下"确定"软键保存设置并关闭对话框。

按下"取消"键不进行保存退出对话框。

通过 RS232 接口传输信息时,使用操作区<SYSTEM>>"调试文件">"RS232">"设置" 中的通讯设置。 8.4 SYSTEM - "维修信息"软键

图 8-31 RS232 接口的参数

说明

通过 RS232 使用 MSG 服务时, RS232 接口不能在其它应用中激活。 例如在操作区 <SYSTEM> > "PLC" > "Step7 连接"中不可激活 RS232 接口。

对文件方式输出进行设置

设置 文件

设置文件的存储位置。

文件设置					
同步送文化					
	D. Lucomcon				
路径: 文佐名:	D:\MSGIEST				
最大长度:	10 kByte	U			
t oo oo oo daa katala katala katala	of sole day				
在以下事件时发;	天消息: 第1123日 / MCC:				
● 部令程序的日本	品化。 (NCM) 目 (NCM)				
					中断
				RCS	确认
\sim $$					

图 8-32 文件设置对话框

8.4 SYSTEM - "维修信息"软键

通过选择框"发送至文件"可激活或取消激活将信息发送至设置的文件。接口取消激活时, 不输出信息,并输出提示行"发生 MSG 指令处理故障"。

可设置文件的存储路径、名称和最大大小。

在输入区"路径"中可选择驱动器 D:(用户 CF 卡), F:(USB 驱动器)或者通过 RCS 连接连接的驱动器。

文件最大大小可选择 10kByte、100kByte 或 1MByte。 达到最大大小时,文件被描述为 环形缓冲器,即新信息在文件末尾写入,并在文件开始处删除相应的行。

此外可设置,在哪些事件中发送信息:

- 零件程序中编程的信息
- 发生报警

按下"确定"软键保存设置并关闭对话框。

按下"取消"键不进行保存退出对话框。

故障记录

显示故障记录。

عر										
M	ISG指	今的問	∀曈日;	ŧ						复位
Γ	, H	1 808	~ ~							
L										
		4				_	4	4	RCS	返回

图 8-33 故障记录对话框

在故障记录中,所有在处理时发生故障的信息都与相应的故障信息一起存储。 使用"复位"软键可删除故障记录。

8.4 SYSTEM - "维修信息"软键

按下"返回"退出对话框。

说明

输出提示行"发生 MSG 指令处理故障"时,可对故障记录进行分析。

使用"MSG"指令编程的示例

在 NC 程序中编程的信息在 SINUMERIK 802D sl 报警显示中标准显示。

表格 8-3 激活/清除信息

 N10 MSG ("轮廓粗加工")
 ; 文本"轮廓粗加工"在报警显示中显示

 N20 X... Y... N ...
 ...

 N...
 ...

 N90 MSG ()
 ; 清除报警显示中的信息

表格 8-4 信息文本包含变量

```
      N10 R12=$AA_IW [X]
      ; R12 中 X 轴的当前位置

      N20 MSG("X 轴位置"<<R12<<"检查")</td>
      ; 激活信息

      N20 X... Y... N ...
      ...

      N...
      ; 清除报警显示中的信息
```

在别的接口上输出信息时,必须在原始信息文本前设置描述信息输出接口的指令。

表格 8-5 在 RS232 输出接口上发送信息

N20 MSG ("V24:轮廓粗加工")	; 文本"轮廓粗加工"通过 RS232 接口以
	ASCII 格式发送

表格 8-6 在文件输出接口上发送信息

N20 MSG ("FILE:轮廓粗加工") ; 文本"轮廓粗加工"发送至设置的文件

系统 8.4 SYSTEM - "维修信息"软键

```
      说明

      如果在零件程序中相同的信息文本重复出现,则在每次输出后必须输入空文本指令。

      例如:

      ...

      MSG("<接口>:示例文本")

      MSG("<接口>:")

      ...

      MSG("<接口>:示例文本")

      MSG("<接口>:示例文本")

      MSG("<接口>:示例文本")

      MSG("<接口>:")

      ...

      MSG("<接口>:")

      ...

      MSG("<接口>::")
```

8.5 SYSTEM - "PLC"软键

8.5 SYSTEM - "PLC"软键

PLC

按此键可以使用其它诊断功能,并可调试 PLC。

Step 7连接

按下此键,打开 STEP 7 通过控制系统 RS232 接口连接的接口参数的配置对话框。

如果 RS232 接口正在进行数据传输,则必须等到数据传输结束后,才可以将控制系统与 编程工具 PLC802 相连。

激活连接后,	进行 RS232 接口的初始化。

Ref Point		
通讯设置		调制解调
		以且
有效通讯参数		
调曲板调明现方法	055 ()	
响 刚用 网络 人人		
波特率	38400 0	
停止位	1	
司 周仪短 数据位	8	
		激活
		连接
↑ STEP7 DLC ++ 大	이 이 이 위 문	絶別で
连接 状态 列表	程序 列表	细" 报警文本

图 8-34 通讯设置

通过转换区进行波特率的设置。可以使用以下数值 9600 / 19200 / 38400 / 57600 / 115200。

说明

连接建立后,在右下方显示相应的连接符号。不可再修改通讯设置。

调制解调器

如果通过调制解调器进行 RS232 接口上的数据传输,则有下列初始化方式:

通讯设置		
有效通讯参数		
调制解调器有效	ON O	
数据格式 波特率 停止位	10 Bit 38400 O 1	
奇偶校验 数据位	None 8	
		激 活 连 接
连接 状态 列表	· 程序 列表	编PLL 报警文本

图 8-35 初始化调制解调器

通过触发栏可以进行下列初始化:

• 波特率

9600 / 19200 / 38400 / 57600 / 115200.

• 奇偶校验:

10 位时 "无"

11 位时 "奇"

另外,通过软键"设置调制解调器"可以对还未建立的连接进行设置:

8.5 SYSTEM - "PLC"软键

 30g 週制解调器配置 有效调制解调器 	参数	调制解调 设 置
调制解调器类型 转换顺序 安装 AT 指令 OK CONNECT NO CARRIER Auto answer	Analog noden O +++ ATH0 AT&FS0=1 OK CONNECT NO CARRIER Hardware O	缺省值
		中 断 承 认

图 8-36 调制解调器设置

通过触发栏可以选择下列调制解调器类型:

- 模拟调制解调器
- ISDN 盒
- 手机

说明 通讯双方的类型必须一致。

有多个 AT 指令程序段的数据时,只需要以 AT 开始一次,其他的指令只跟随其后就行 了,例如: AT&FS0=1E1X0&W。

单个指令的准确外观和其参数可以参见厂商手册,因为在厂商的不同设备上会有部分指令 内容完全不同。因此控制器中的缺省值只是最小值,而且在各种应用情况首次使用之前 要进行检查。

该功能用来激活控制器与 PG/PC 之间的连接。 等待调用编程工具 PLC802。 在该状态下 不能对设置进行更新。

软键标签在"连接无效"中改变。

按下"连接无效",传输会在控制系统的任意位置中断。这时又能够在设置中进行修改。

有效或无效状态在通电后(除使用缺省数据启动时)将一直保持。在状态栏中会使用一个符号来显示有效的连接。

使用返回键离开菜单。

<u>系统</u> 8.5 SYSTEM - "PLC"软键

其它功能

PLC 状态

使用该功能可以显示下表中存储区的瞬时状态,并可以进行修改。 可以同时显示 16 个操作数。

表格 8-7 存储区

输入端	I	输入字节 (IBx),输入字 (Iwx),输入双字 (IDx)				
输出端	Q					
标志	М	ーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーー				
时间	Т	时间 (Tx)				
计数器	С	计数器 (Zx)				
数据	V	数据字节(Vbx),数据字(Vwx),数据双字(VDx)				
格式	В	二进制				
	н	十六进制				
	D	十进制				
		在双字方式中不可以使用二进制。 计数器和计时器使以十进制方式显示。				

图 8-37 PLC 状态显示

8.5 SYSTEM - "PLC"软键

操作数 操作数地址依次递增 **1**。

操作数

删除

所有的操作地址被删除。

操作数地址依次递减 1。

修改

状态 列表

使用功能"状态表"可以显示并修改 PLC 信号。 提供有 3 张表:

中断值的循环更新。可以修改操作数数值。

- 输入端(缺省设定) 左表
- 标志(缺省设定)中间表
- 输出端(缺省设定) 右表
- 变量

2						
IBØ	[R / W]	MBØ	[R / W]	QBØ	[R / W]	
0	00000000	0	00000000	Ø	00000000	
1	00000000	1	0000000	1	0000000	
2	00000000	2	0000000	2	0000000	
3	00000000	3	0000000	3	0000000	
4	00000000	4	0000000	4	0000000	编辑板
5	00000000	5	0000000	5	0000000	
6	0000000	6	0000000	6	0000000	
7	00000000	7	0000000	7	0000000	
8	00000000	8	00000000	8	0000000	
9	00000000	9	0000000	9	0000000	更改
10	00000000	10	0000000	10	0000000	
11	00000000	11	00000000	11	0000000	
12	0000000	12	0000000	12	00000000	
13	00000000	13	0000000	13	0000000	
14	00000000	14	00000000	14	0000000	
15	00000000	15	0000000	15	0000000	
1					RCS E	
STEP7	PLC	、态	PLC 程序	\$		编PLC
连 接	- 状态 - 🦻	「表」	屋序 列录	₹		报警文本

图 8-38 PLC 状态表

修改

该软键可以修改标记变量的数值。 通过按下软键 "接收"保存修改。

8.5 SYSTEM - "PLC"软键

编辑块

为有效栏分配一个新的区域。此时在对话窗口中有 4 个区域可供选择。可以为每个栏分 配一个起始地址,需要在相应的输入区中进行登记。退出输入窗口后,该设置被控制自 动保存。

~								
IBØ	[R / W]	мво	IR Z	WJ	QBØ	IR Z	WJ	
0	00000000	0	00000000	Ξ	0	00000000	Ξ	
1	00000000	1	00000000		1	00000000		
2	00000000	2	00000000		2	00000000		
3	00000000	3	00000000		3	00000000		
4	00001101	4	00000000		4	00000000		
5	00000101	5	00000000		5	00000000		
6	00000000	6	00000000		6	00000000		
7	00000000	7	00000000		7	00000000		
8	00000000	8	00000000		8	00000000		
9	00000000	9	00000000		9	000000000		
	dit nad	10	00000000		10	00000000		
	ure puu	11	00000000		11	00000000		
© IB	8	12	00000000		12	00000000		
©QВ	0	13	00000000		13	00000000		
OMB	0	14	00000000		14	00000000		(and
QVВ	0	15	00000000		15	00000000		Cancer
								1
1							RCSE	ОК

图 8-39 数据类型的选择窗口

使用光标键和"Page up" /"Page Down"键可以在不同的栏中以其间进行定位

PLC 程序

用梯形图进行 PLC 诊断(参见"用梯形图进行 PLC 诊断"章节)。

程序列表

可以通过 PLC 选择零件程序并运行它们。为此,PLC 用户程序将程序编号写入 PLC 接口,然后根据参考列表转换为程序名称。 最多可以管理 255 个程序。

图 8-40 PLC 程序列表

8.5 SYSTEM - "PLC"软键

在对话窗口中显示有 MPF 目录下的所有文件以及它们的分配情况,以参考列表 (PLCPROG.LST)的形式列出。可以使用 TAB 键在两栏之间进行切换。根据上下文显 示"复制"、"粘贴"和"删除"的软键功能。如果光标位于左侧,则只能使用"复制"功能。在 屏幕的右侧,可以使用"插入"和"删除"功能对参考列表进行修改。

接口信号的文献参考

SINUMERIK 802D sl 功能手册;各种接口信号 (A2) SINUMERIK 802D sl 参数手册

复制

将选中的文件名称保存至剪贴板。

粘贴

将文件名称粘贴到当前的光标位置。

删除

将选中的文件名称从分配列表中删除。

参考列表的结构 (文件 PLCPROG.LST)

它分为3个区域:

序号	范围	保护等级	
1至100	用户范围	用户	
101 至 200	机床制造商	机床制造商	
201 至 255	西门子	西门子	

每个程序都有相应的注释行。每行分为两列,必须用 TAB、空格或"]"将其相互隔开。第一列为 PLC 的参考编号,第二列为文件名称。

示例:

1 | Welle.mpf (轴文件)

2 | Kegel.mpf(圆锥文件)

使用此功能可以插入或修改 PLC 用户报警文本。移动光标选择所需要的报警号 同时在输入行中显示出当前有效的报警文本。
系统 8.5 SYSTEM - "PLC"软键

图 8-41 编辑 PLC 报警文本

在输入行输入新的文本。使用"输入"结束文本输入,并使用"保存"将结果保存。 文本的注释请参阅操作说明。 系统

8.6 SYSTEM - "调试文件"软键

8.6 SYSTEM - "调试文件"软键

调试文件

通过该菜单可对一般文件、调试存档和 PLC 项目进行创建、读出、读入、复制、删除等操作。

该窗口显示了树形结构中所选驱动器的内容。水平软键列出了可供选择的驱动器。 垂直 软键则包括了可以用于该驱动器的控制功能。

固定设置的驱动器的分配为:

- 802D 数据 调试数据
- 用户 CF 卡 CF 卡上的用户数据
- RCS 连接: PC/PG 上通过 RCS 释放的驱动器的数据(仅用于 SINUMERIK 802D sl pro)
- RS232: 串行接口
- 厂商驱动器:制造商专门保存的数据
- USB 驱动器: USB 设备上的用户数据
- 厂商存档:系统 CF 卡上存档的调试数据

按照"复制&粘贴"原则对数据进行操作。

图 8-42 调试文件

802D 数据

"802 D 数据"区域中的单个数据组有以下含义:

说明

激活相应的功能时,垂度补偿通过 NUR 列出。

• 数据(文本格式)

这些数据为专门的初始化数据,并作为 ASCII 文件进行传输。

- 机床数据
- 设定数据
- 刀具数据
- R 参数
- 零点偏移
- 丝杠螺距误差补偿
- 垂度补偿
- 全局用户数据
- 调试存档(驱动/NC/PLC/HMI)

这些数据构成 HMI 数据的调试文件,并以二进制格式在 HMI 存档中进行传输。

- 驱动机床数据
- NC 数据
- NC 目录
- 显示机床数据
- 丝杠螺距误差补偿
- 垂度补偿
- PLC 项目
- HMI 数据和应用
- PLC 项目 (*.PTE)

在编程工具输出格式中,通过 PLC 项目操作的支持可以直接在控制器和编程工具之间 进行切换,而无需进行转换。

• 许可证密钥文件

用户 CF 卡

读入和读出 CF 卡数据。

系统

8.6 SYSTEM - "调试文件"软键

RCS 连接

通过连接至 PG/PC 的网络读入/读出数据。 PG/PC 上必须安装 RCS 工具(仅用于 SINUMERIK 802D sl pro)。

说明

在 RCS 工具中提供有详细的在线帮助。 其他的操作步骤, 比如: 建立连接、项目管理 等, 请从帮助中查取。

通过 RS232 接口读入和读出数据。

故障 记录

说明

此外使用软键功能"更多"可查看传输记录。用于"故障记录"功能。

显示和修改 RS232 接口参数。修改会立即在设置中生效。 使用软键功能"保存"可以在关机之后一直保持所选择数据的有效性。 软键"缺省设置" 会将所有的设定复位为基本设置。

ペ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※				缺 省 设 置
	通讯设置 设备特单位 奇墀位 奇媚相位 传输纸覆盖	RTS CTS 19200 O 10 None O 80 1a NO		存储
			گر گ RCS	<mark>《</mark> 返 回

图 8-43 RS232 接口的参数

接口参数

参数	说明
设备类型	RTS CTS
	RTS(Request to Send,请求发送)信号对数据传输的发送操作进行控制。
	CTS(Clear to Send, 允许发送)信号显示数据传输发送就绪作为 RTS 的应答信号
波特率	接口速度设置。
	300 波特
	600 波特
	1200 波特
	2400 波特
	4800 波特
	9600 波特 10200 冰塘
	19200 波符
	57600 波特
	115200 波特
停止位	异步数据传输时的停止位数。
	输入:
	1 停止位 (预设置)
	2 停止位
奇偶	奇偶校验位可以用于错误识别。为已编码的字符添加奇偶校验位,目的 是使"1"设置位上的数目为奇数或偶数。
	输入:
	无奇偶 (预设置)
	偶
	奇

表格 8-8 接口参数

系统

8.6 SYSTEM - "调试文件"软键

数据位	异步传输时的数据位数目		
	输入:		
	7 数据位		
	8 数据位 (预设置)		
确认后覆盖	Y: 在读入时检验, 文件是否已存在于 NC 之中。		
	N: 不经询问将文件覆盖		

使用此功能可从制造商目录 "F" 读入和读出数据。

使用此功能可从 USB 设备读入和读出数据。

厂商存档

创建/恢复系统 CF 卡上的厂商存档。

在下图中尚未创建存档文件。 ZIP 格式存档的符号会以感叹号标记。

厂商存档	
VARCHIVE	
「「」」调试存档(厂商)	新日寺
	AN D SEC
	全选
	复制
	壯 ī 止
	orti e à
	删除
	化法
▲ 未建立文件。	*** **
802D 用户 BCS连接 B5232 制造商 USB 厂商	
数据 CF卡 ···································	

图 8-44 厂商存档,尚未创建存档文件

垂直软键

激活文件功能时,有以下垂直软键可用:

- "重命名": 使用该功能可以为预先用光标选定的文件重新命名。
- "新建目录": 设立一个新目录
- "复制": 将一个或多个文件复制到剪贴板中。

8.6 SYSTEM - "调试文件"软键

系统

- "粘贴": 将文件或目录从剪贴板中粘贴至当前目录中。
- "删除": 将选中的文件名称从分配列表中删除。
- "全部选中": 选中所有的文件进行下一步操作。
- "属性":显示存储器容量。
- "任务列表": 显示有效文件任务的列表并提供结束或显示文件任务的可能性。 使用此功能切换至所需的垂直软键。

说明

更多

...

如果功能显示为灰色,表示其不可用于显示的驱动器/目录。

8.7 报警显示

8.7 报警显示

操作步骤

打开报警窗口。利用软键对 NC 报警进行分类。PLC 报警未分类。

图 **8-45** 报警显示窗口

软键

图 8-46 报警记录

使用"删除记录"软键删除记录。

另存为

此外也可通过软键"另存为"将文件在 CF 卡或 USB 设备中输出。

系统

8.7 报警显示

9

循环

9.1 循环概述

循环是一种工艺子程序。

借助这些循环可普遍有效地实现特定的加工过程,比如切入磨削、修整或纵向磨削。 通过所提供的参数可以使循环和具体的加工要求相符。

在磨削中,一般进行两种不同的工艺加工过程:

- 修整砂轮
- 磨削工件

修整和磨削加工通过使用 NC 循环实现。

有时需要修整磨削刀具,从而可以使使用一段时间后的磨损砂轮仍能恢复原始形状。 修整砂轮有如下两个目的:

- 成型-借此达到需要的砂轮形状。
- 磨锐-重新获得砂轮的切削能力。

通过工件的磨削循环可以使用相互垂直的 Y/Z 进给轴进行平面磨削加工。

磨削循环

使用控制系统 SINUMERIK 802D sl 可以进行下列平面磨削的磨削循环:

CYCLE406	砂轮的 Z 轴定位
CYCLE407	移动到安全位置
CYCLE408	3级式插入摆动(粗磨、精磨、研磨)
CYCLE409	3级式平面磨削(粗磨、精磨、研磨)
CYCLE416	修整和成型
CYCLE426	摆动插入
CYCLE427	带持续进给的平面磨削
CYCLE428	带间歇进给的平面磨削
CYCLE429	轮廓磨削

9.1 循环概述

CYCLE430修整成型辊子CYCLE446选择砂轮圆周速度值

使用工具盒输出循环。 在开机调试控制系统时通过 RS232 接口将其装载到零件程序存储器中。

加工循环运行期间的操作

所有的循环都可以选择自动进给或者手轮进给。加工期间,可以中断循环或者插入修整。

说明

这些操作功能(例如:中间修整)由机床制造商通过 CNC 机床操作面板上的按键实现。

接着,从前一位置值继续加工。

如果设置了一个循环,则参数图上方的符号可以标识相应的操作方法(参见下图)。

图 9-1 循环的参数图

中断循环,空运行到回退位置并卸载

带卸载的中间修整

符号的含义如下:

允许 Y 方向的手轮进给

允许Z方向的手轮进给

说明

只要存在进给量,则这些符号的功能(例如:"循环中断")始终生效。 气磨削期间循环中断同样生效。

9.2 循环的前提条件

9.2 循环的前提条件

前提条件

以下前提条件对若干磨削循环生效:

1. 加工平面必须激活。

平面磨削中,一般允许所有平面。

但一般都选择 G19, 因为在修整时需要该平面(Y/Z)。

如果要选择几何轴,也需激活该平面。

但在加工中,其他平面(G17,G18)也生效。

平面之间的关联性取决于进给轴和相应的摆动轴。

- 2. 在调用循环前,必须编程一个刀具号和分配的刀具补偿。
- 3. 砂轮圆周速度由 CYCLE446 中的圆周速度参数计算得出。
- 4. 在文件 SGUD_MA.DEF 中预设了所有机床专用的 M 指令,例如: 主轴转向、冷却液 或者测量设备接通等。

机床制造商可以修改该值。

- 5. 除了砂轮和修整器的补偿数据外,还需要预设刀具专用的磨削数据。
- 为了测定首次进给,计算精度必须至少高于显示机床数据中输入精度 10 倍,从而可以 确定平面磨削时的起始位置。

下列机床数据用于计算精度:

- 计算精度

MD10200 INT_INCR_PER_MM (直线位置的计算精度)或 MD10210 INT_INCR_PER_DEG (角度精度的计算精度)

- 输入精度

MD203 DISPLAY_RESOLUTION (显示精度)或 MD204 DISPLAY_RESOLUTION_INCH (英制尺寸系统的显示精度)

9.3 循环编程

循环是带有名称和参数表的子程序。

9.3.1 调用和返回条件

在循环调用之前有效的 G 功能和可编程偏移在循环之后仍可以生效。 在循环调用之前定义加工平面(G17、G18、G19)。执行循环的当前平面中包含:

- 平面中第1根轴(横坐标)
- 平面中第2根轴(纵坐标)
- 垂直于平面的第3根轴,刀具轴,进给轴(应用轴)。

平面和轴分配:

指令	平面	垂直的进给轴
G17	X/Y	Z
G18	Z/X	Y
G19	Y/Z	Х

9.3 循环编程

9.3.2 故障信息和故障处理

9.3.2.1 概述

如果在循环中识别出错误的状态,则产生一个报警,并且中断该循环的执行。 另外循环还会在控制器的对话行中输出信息。这个信息不会中断加工。

文献参考

在" SINUMERIK 802D sl 诊断手册"中说明了故障、需要的消除措施以及控制系统对话框中的显示信息。

9.3.2.2 循环中的故障处理

在循环中会产生编号为 61000 到 62999 之间的报警。根据报警响应和清除标准,对该号 码区再次进行划分。与报警号码同时显示出的故障文本,可以给出关于错误原因的进一步 阐述。

报警号	删除标准	报警反应
61000 61999	NC_复位	NC 中的语句处理被中断
62000 62999	删除键	程序处理不中断; 仅显示

9.3.3 循环调用与参数表

循环按照用户定义的变量进行加工。可以通过循环调用时的参数表传送用于循环的供给参数。

说明

循环调用始终要求一个独立的程序段。

循环参数的基本说明

编程说明介绍了每个循环参数表的

- 顺序和
- 类型。

必须完全遵守参数顺序。

每个循环的供给参数都有一个特定的数据类型。循环调用时,必须注意这些当前所用参数的类型。在参数表中可以传输以下参数:

- R 参数
- 常量

如果在参数表中使用 R 参数,必须事先在程序中为其赋值。循环此时可按以下方式调用:

- 用一个不完整的参数表或者
- 忽略参数

如果要删除调用时写入的上一传输参数,可用符号")"提前结束参数表。如果想要在此之间省略参数,则写入逗号"...,,..."作为占位符。

说明

带离散的或者限制范围的参数,不进行参数值的奇偶性校验,除非在一个循环中明确说明 一个故障的反应。

如果在循环调用时,参数表中的条目比循环中定义的参数多,则显示 NC 报警 12340"参数数量太多",并且不执行该循环。

循环调用

编写程序调用的各种方法可以参见单个循环的编程举例。

9.3 循环编程

硬件前提条件

为了使用磨削循环,磨床需要满足其他的硬件前提条件。 修整时为了达到动作叠加需要使用一个或两个手轮。 必须具备下列外部设备的连接接口:

- 机械振动传感装置
- 测量控制器
- 接触式探头
- 7个 MCPA 快速输入,用于:
 - 测量控制器(5个输入)
 - 机械振动传感装置(2个输入)

调用和返回条件

磨削循环编程和具体的轴名称无关。在上一层程序中的循环调用之前,无碰撞返回运行至 磨削位置。

如果在此所要求的主轴转速和主轴旋转方向的值在磨削循环中没有提供参数,则它们必须在零件程序中编程。

在循环调用之前有效的 G 功能在循环之后仍然保持有效。

磨削时的坐标系

在一般情况下, CNC 磨床分别使用独立的坐标系用于磨削与修整加工。当机床进行修整时, 会对这两个坐标系的零点进行一次确定。

机床进行修整时,由操作人员通过所需轴上的工件对刀来确定工件零点。生成自动程序的 其他所有几何数据都以该零点依据。

在进行修整时,通过磨具刀沿与修整用金刚石的对刀来确定修整零点。该点将用作修整程 序的参考点。

循环 9.3 循环编程

图 9-2 磨削时的坐标系

平面定义

在使用磨削循环之前必须激活 G507。横向进给轴一般为第一个几何轴。 在调用前必须选择长度补偿。该长度补偿始终作用于所选定的平面并在循环结束后保持 有效。

砂轮类型

循环支持两种砂轮类型,平形砂轮和斜面砂轮。 在加工过程中,砂轮只在Y轴或Z轴方向上进给。

使用测量工具和传感器

进行磨削时可以使用下列测量工具/传感器:

- 测量头
- 测量控制器
- 机械振动传感装置

使用可内转测量头可以测定 Z 轴上的纵向位置。该轴位置会被保存到参数中并用来校正 计算每个工件上所出现的夹紧误差。 进行磨削加工时,一个测量控制器也同时作用在工件直径上。测量控制器可以实现粗磨、精磨和研磨时 Y 轴上的加工余量坐标、进给转换或用来测定终端位置。

机械振动传感器(机械振动传感装置)可以在进行工件直径的无线通讯时实现进给停止。 可以形成时间上的最佳返回条件。

循环 9.4 程序编辑器的循环支持

9.4 程序编辑器的循环支持

程序编辑器提供编程支持,可以在程序中插入循环调用并输入参数。

功能

循环支持提供以下的功能:

- 通过软键选择循环
- 带有辅助图、用于参数赋值的输入界面

从单独的屏幕中生成程序代码,可以对其重置。

所需文件的概述

以下的文件为循环支持的基础:

- sc.com
- cov.com

说明

在控制系统开机调试时装载这些文件,并且必须始终载入。

9.4 程序编辑器的循环支持

循环支持的条件

图 9-3 循环支持的菜单树

按照下列步骤向程序中添加循环调用:

- 在水平软键栏中可以通过软键"磨削循环"在选择栏内更换单独的循环。
- 通过垂直软键栏选择循环,带有辅助图的相应输入屏幕跳出。
- 然后可以直接输入数值。 在输入时会检查数值是否在允许的范围之内。
- 有些只能使用少量数值的参数,可以借助转换按键进行选择。
- 按下"OK"(或者在输入错误时按下"取消")结束选择。

重新编译

程序代码的重新编译可以借助循环支持对现有的程序中进行更改。

将光标定位在需要更改的行上并按下软键"反编译"。这样就可以再次打开生成该程序的、 相应的输入屏幕窗口,可以重新修改并保存数值。

9.5 砂轮的 Z 轴定位 - CYCLE406

9.5 砂轮的 Z 轴定位 - CYCLE406

编程

CYCLE406(N_SITZ, CLEAR, CAL, Z_LPOS, MODE, Y_POS, Z_POS, ZSTW, A_Z, F_LU, F_SR, N_FR, FX, XSTART, XENDE)

参数

表格 9-1 参数 CYCLE406

参数	数据类 型	含义	
N_SITZ	INT	底座数	
CLEAR	INT	在运行前删除旧的偏移	
CAL	INT	将轴设置在 Z 位置终点	
Z_LPOS	INT	在退回时的方向	
MODE	INT	逼近方式:	
		0=传感器+手轮	
		1=传感器+余量	
		2=只使用手轮	
		3=手轮+余量	
Y_POS	REAL	高度	
Z_POS	REAL	设置值的 Z 位置	
ZSTW	REAL	Z 偏移	
A_Z	REAL	对刀后的 Z 轴余量	
F_LU	REAL	每个冲程无限通讯的进给	
F_SR	REAL	每个冲程磨削的进给	
N_FR	REAL	摆动时的修光冲程	
FX	REAL	X 轴进给	
XSTART	REAL	X轴的起点	
XENDE	REAL	X轴的终点	

9.5 砂轮的 Z 轴定位 - CYCLE406

功能

该循环用于砂轮的起始运行和 Z 位置设置。

操作步骤

循环运行到 Z 轴位置,并选用声发射传感器或仅使用手轮开始逼近。 在识别到对刀后,输入手轮的值或者相对于对刀点的值。 如果参数 CAL 设置为"1",则在终点时,Z 轴定位到 Z 位置。 如果没有配置声发射传感器输入,并且存在空磨进给,则在运行开始时,循环立即和手轮 接通。

几何参数图

图 9-4 砂轮的 Z 轴定位 - CYCLE406

程序举例

加工过程:

- 按键从位置 -100.0000 mm 到 Y 位置 -20.0000 mm,之前删除原先的偏移并且轴的值 设置在终点。
- 进刀只通过手轮进行。
- 如果选择了自动进给,则通过冲程进给。
- 起始位置在 -110.000 mm 上。
- 点 -350 和 100 之间(450 个摆动位移),工作台的进给为 30000 mm/min。

9.5 砂轮的 Z 轴定位 - CYCLE406

- 取消进刀后,开始修光冲程。
- 作为示例,下一步继续一个3级摆动插入循环。由于此前轴校准到-100mm,所以 始终继续磨削50微米。

```
N10 T2D2
N20 CYCLE446( 20)
N30 CYCLE406( 0, 1, 1, -1, 2, -20, -100, 10, 0.1, 3, 0.1, 1, 30000, -350, 100)
N40 CYCLE408( 0, 100, -350, -20, -99.95, 0, 0, 0, 0, 0, -0.05, 0.02, 0.005, 0, 0.01,
0.002, 0.001, 1, 1, 5, 0, 1, 0, 0, 0.01, 30000, 30000, 30000, 30000)
N50 M30
```

9.6 安全位置 - CYCLE407

9.6 安全位置 - CYCLE407

编程

CYCLE407(YS, STORE, KOORD)

参数

表格 9-2 参数 CYCLE407

参数	数据类型	含义
YS	REAL	退回位置 mm
STORE	INT	全局保存位置 0/1
KOORD	INT	位置 WCS=1 或者 MCS=0

功能

此循环用于在磨削期间或者磨削中断,例如,中间修整时运行到安全位置。

操作步骤

循环检查当前位置并且运行到该位置,如果进给轴小于输入的值。 取决于参数 KOORD,运行在工件坐标系或者机床坐标系(基本坐标)中进行。

几何参数图

图 9-5 安全位置 - CYCLE407

9.73级式插入摆动(粗磨、精磨、研磨)-CYCLE408

9.7 3级式插入摆动(粗磨、精磨、研磨)-CYCLE408

编程

CYCLE408(N_SITZ, XSTART, XEND, YEND ZEND, KS, Y_A_LU, Y_A_SR, Y_A_SL, Y_A_FS, Z_A_LU, Z_A_SR, Z_A_SL, Z_A_FS, LUZ, SRZ, SLZ, FSZ, N_SR, N_SL, N_FS, D_SR, D_SL, D_FS, ESL, EFS, FX_SR, FX_SL, FX_FS, FR)

参数

表格 9-3 参数 CYCLE408

参数	数据类 型	含义	
N_SITZ	INT	底座数	
XSTART	REAL	X轴的起点(绝对)	
XEND	REAL	X轴的终点(绝对)	
YEND	REAL	砂轮成品尺寸的 Y 轴位置(绝对)	
ZEND	REAL	砂轮成品尺寸的 Z 轴位置(绝对)	
KS	INT	机械振动	
Y_A_LU	REAL	气磨削余量(增量)	
Y_A_SR	REAL	粗磨余量(增量)	
Y_A_SL	REAL	精磨余量(增量)	
Y_A_FS	REAL	研磨余量(増量)	
Z_A_LU	REAL	气磨削余量(增量)	
Z_A_SR	REAL	粗磨余量(增量)	
Z_A_SL	REAL	精磨余量(增量)	
Z_A_FS	REAL	研磨余量(增量)	
LUZ	REAL	气磨削每个冲程的进刀	
SRZ	REAL	粗磨每个冲程的进刀	
SLZ	REAL	精磨每个冲程的进刀	
FSZ	REAL	研磨每个冲程的进刀	
N_SR	INT	粗磨后的修光冲程	

9.73级式插入摆动(粗磨、精磨、研磨)-CYCLE408

参数	数据类 型	含义
N_SL	INT	精磨后的修光冲程
N_FS	INT	研磨后的修光冲程
D_SR	INT	粗磨前的修整冲程
D_SL	INT	精磨前的修整冲程
D_FS	INT	研磨前的修整冲程
ESL	INT	精磨前的卸载
EFS	INT	研磨前的卸载
FX_SR	REAL	粗磨×进给率
FX_SL	REAL	精磨×进给率
FX_FS	REAL	研磨 X 进给率
FR	REAL	Y 进给/Z 进给

功能

调用3级式插入循环可以加工一个小于砂轮宽的槽或平面。

还可以磨削端面。在该过程中,以摆动方式磨削平面。

在换向点处进刀。 允许中间修整、循环中断和手轮运行。

始终在终点处对按键作出反应。

在结束时,退刀至余量位置。

允许 Y 或 Z 方向的进刀,其中 Z 可以正向或负向。

加工开始时可以按更高的进给量进行加工。如果通过机械振动传感装置识别出了对刀,则按照固定传声装置的进给量减去磨削进给量的值退刀。如果没有配置机械振动传感装置输入,则在运行开始时,循环立即和手轮接通。

循环自动将磨削过程划分为粗磨、精磨和研磨。每级磨削结束后,可以编程修光冲程。

此外,还可以在粗磨和精磨结束后编程卸载。

在每个工艺步骤前可以编程修整冲程。

操作步骤

运行到余量位置。

9.73级式插入摆动(粗磨、精磨、研磨)-CYCLE408

运行到 X 位置和 Z 位置。

开始摆动运行,在换向点进刀。

摆动运行开始后的首次进刀应使所有后续的进刀和进刀量匹配。 同样,在加工中断、中间修整以及取消手轮叠加后,也进行该过程。

在中断或者修整后,轴按照卸载值运行到加工起点处。

结束后,退回到余量位置。

几何参数图

图 9-6 加工循环 3 级式插入摆动(粗加工、精加工、修光) - CYCLE408

编程举例 1

加工过程:

- 按照 20 m/s 的圆周速度在 Y 方向插入。
- 在程序段 N30 中,机械振动 0.1 mm 余量和 0.1 mm 正常进给,换向点精磨 0.05 mm,换向点研磨 0.01 mm。
- 机械振动时,每个冲程 0.03 mm 的进给,粗磨时 0.02 mm 的进给,精磨时 0.01 mm,研磨时 0.002 mm 的进给。
- 粗磨后1次修光冲程,精磨后2次修光冲程,研磨后3次修光。
- 精磨和研磨的每次修整都为一次冲程。
- 粗磨后 0.03 mm 的卸载值,精磨后 0.015 mm。

N10 T1D1

9.73级式插入摆动(粗磨、精磨、研磨) - CYCLE408

```
N20 CYCLE446( 20)
N30 CYCLE408( 0, 100, -100, 0, 0, 0, 0.1, 0.1, 0.05, 0.01, 0.1, 0, 0.05, 0.01, 0.03,
0.02, 0.01, 0.002, 1, 2, 3, 0, 1, 1, 0.03, 0.015, 30000, 29000, 28000, 3000)
N40 M30
```

编程举例 2

加工过程:

- 按照 20 m/s 的圆周速度在 Z 方向插入。
- 在程序段 N30 中,机械振动 0.1 mm 余量和 0.1 mm 正常进给,换向点精磨 0.05 mm,换向点研磨 0.01mm。
- 机械振动时,每个冲程 0.03 mm 的进给,粗磨时 0.02 mm 的进给,精磨时 0.01 mm,研磨时 0.002 mm 的进给。
- 粗磨后1次修光冲程,精磨后2次修光冲程,研磨后3次修光。
- 精磨和研磨的每次修整都为一次冲程。
- 粗磨后 0.03 mm 的卸载值,精磨后 0.015 mm。

```
N10 T1D1
N20 CYCLE446( 20)
N30 CYCLE408( 0, 100, -100, 0, 0, 0, 0.1, 0, 0.05, 0.01, 0.1, -0.1, 0.05, 0.01,
0.03, 0.02, 0.01, 0.002, 1, 2, 3, 0, 1, 1, 0.03, 0.015, 30000, 29000, 28000, 3000)
N40 M30
```

9.83级式平面磨削(粗磨、精磨、研磨) - CYCLE409

9.8 3级式平面磨削(粗磨、精磨、研磨) - CYCLE409

编程

CYCLE409(N_SITZ, XSTART, XENDE, ZSTART, ZEND, YEND, B_SR, B_SL, B_FS, KS, Y_A_LU, Y_A_SR, Y_A_SL, Y_A_FS, LUZ, SRZ, SLZ, FSZ, N_SR, N_SL, N_FS, D_SR, D_SL, D_FS, ESL, EFS, FX_SR, FX_SL, FX_FS, FZ_SR, FZ_SL, FZ_FS, FY)

参数

参数	数据类型	含义
N_SITZ	INT	底座数
XSTART	REAL	X 轴的起点(绝对)
XEND	REAL	X 轴的终点(绝对)
ZSTART	REAL	Z 轴的起点(绝对)
ZEND	REAL	Z 轴的终点(绝对)
YEND	REAL	成品尺寸(绝对)
B_SR	INT	粗磨加工方式:
		0-持续
		1-间歇
B_SL	INT	精磨加工方式:
		0-持续
		1-间歇
B_FS	INT	研磨加工方式:
		0-持续
		1-间歇
KS	INT	机械振动
Y_A_LU	REAL	气磨削余量(增量)
Y_A_SR	REAL	粗磨余量(增量)
Y_A_SL	REAL	精磨余量(增量)
Y_A_FS	REAL	研磨余量(增量)

表格 9-4 参数 CYCLE409

9.83级式平面磨削(粗磨、精磨、研磨) - CYCLE409

参数	数据类型	含义
LUZ	REAL	气磨削每个冲程的进刀
SRZ	REAL	粗磨每个冲程的进刀
SLZ	REAL	精磨每个冲程的进刀
FSZ	REAL	研磨每个冲程的进刀
N_SR	INT	粗磨后的修光冲程
N_SL	INT	精磨后的修光冲程
N_FS	INT	研磨后的修光冲程
D_SR	INT	粗磨前的修整冲程
D_SL	INT	精磨前的修整冲程
D_FS	INT	研磨前的修整冲程
FX_SR	REAL	粗磨 X 进给率
FX_SL	REAL	精磨×进给率
FX_FS	REAL	研磨 X 进给率
FZ_SR	REAL	粗磨Z进给率
FZ_SL	REAL	精磨 Z 进给率
FZ_S	REAL	研磨 Z 进给率
FY	REAL	Y 进给

功能

3级平面磨削循环可以加工比砂轮宽的平面。在该过程中,以摆动方式或间歇方式磨削平面。

在 X 和 Z 轴的换向点进行 Y 轴进刀(左/后,右/后,左/前或右/前)。

允许中间修整、循环中断和手轮运行。

始终在终点处对按键作出反应。

在结束时,退刀至起点。

加工开始时可以按更高的进给量进行加工。

如果通过机械振动传感装置识别出了对刀,则按照固定传声装置的进给量减去磨削进给量的值退刀。

如果没有配置机械振动传感装置输入,则在运行开始时,循环立即和手轮接通。

9.83级式平面磨削(粗磨、精磨、研磨) - CYCLE409

循环自动将磨削过程划分为粗磨、精磨和研磨。

每级磨削结束后,可以编程修光冲程。

此外,还可以在粗磨和精磨结束后编程卸载。

在每个工艺步骤前可以编程修整冲程。

操作步骤

运行到余量位置,至X轴起点和Z轴起点。

开始摆动运行,在换向点进刀。

摆动运行开始后的首次进刀应使所有后续的进刀和进刀量匹配。 同样,在加工中断、中间修整以及取消手轮叠加后,也进行该过程。

摆动运行并不通过摆动功能执行,因为这将会在删除剩余行程时导致故障,从而耗费 PLC 的性能。

在中断或者修整后,轴按照卸载值运行到加工起点处。

结束后,退回到起点。

几何参数图

图 9-7 3级式平面磨削(粗磨、精磨、研磨)加工循环 - CYCLE409

9.83级式平面磨削(粗磨、精磨、研磨) - CYCLE409

程序举例

加工过程:

- 砂轮按照 20 m/s 的圆周速度磨削平面。
- 在程序段 N30 中,空气余量 0.05 mm,粗磨余量 0.05 mm,精磨余量 0.025 mm 以及研磨余量 0.005 mm。
- 机械振动时,每个冲程 0.03 mm 的进给,粗磨时 0.02 mm 的进给,精磨时 0.01 mm,研磨时 0.001 mm 的进给。
- 粗磨后1次修光冲程,精磨后2次修光冲程,研磨后3次修光。
- 精磨和研磨的每次修整都为一次冲程。
- 精磨前2次冲程,研磨前1次冲程。
- 粗磨后 0.03 mm 的卸载值,精磨后 0.015 mm。
- 粗磨时,持续在 Z 轴进刀。
- 精磨和研磨时,间歇式进刀。

```
N10 T2D1
N20 CYCLE446( 20)
N30 CYCLE409( 0, 100, -350, 0, -150, 10, 0, 1, 1, 0, 0.05, 0.05, 0.025, 0.005, 0.03,
0.02, 0.01, 0.001, 1, 2, 3, 0, 2, 1, 0.03, 0.015, 30000, 29000, 28000, 40, 35, 30,
3000)
N40 M30
```

9.9 修整和成型 - CYCLE416

9.9 修整和成型 – CYCLE416

编程

CYCLE416(Y_AB, Z_AB_L, Z_AB_R, F_DL_AB, F_BL_AB, F_DR_AB, F_BR_AB, F_Z_AB, N_ABR, USCH, N_AWST)

参数

参数	数据类 型	含义
Y_AB	REAL	Y 向修整量 (增量)
Z_AB_L	REAL	Z 向左修整量 (增量)
Z_AB_R	REAL	Z 向右修整量 (增量)
F_DL_AB	REAL	Y 向左修整进给率
F_BL_AB	REAL	轨迹中左修整进给率
F_DR_AB	REAL	Y 向左右修整进给率
F_BR_AB	REAL	轨迹中右修整进给率
F_Z_AB	REAL	Z向修整进给率
N_ABR	INT	修整次数
USCH	REAL	砂轮圆周速度
N_AWST	INT	两次修整间的工件数

表格 9-5 参数 CYCLE416

功能

通过该循环可以使用直线修整器修整砂轮。 每次修整冲程后,都计算当前刀具补偿中磨损参数修整过的量。 修整取决于工件计数器_GC_WKS。

操作步骤

使用直线修整器和修整的设置循环进行修整(CYCLE432)。

9.9 修整和成型 - CYCLE416

几何参数图

图 9-8 修整和成型 – CYCLE416

程序举例

加工过程:

- 1 次冲程修整 0.02 mm 的修整量, 5 个工件后 0.01 mm 的左侧和右侧修整量。
- 空行程的数量保存在刀具数据中,如果使用旋转的修整器加工,则主轴的圆周速度比 例也保存在刀具数据中。

```
N10 T1D1
N20 CYCLE416(0.02,0.01,0.01,0.2,0.2,0.2,0.2,0.2,1,35,5)
N30 M30
```
循环 9.10 摆动插入 - CYCLE426

9.10 摆动插入 - CYCLE426

编程

CYCLE426(N_SITZ, XSTART, XEND, YEND, ZEND, ZU_ART, KS, Y_A_LU, Y_A_SR, Z_A_LU, Z_A_SR, LUZ, SRZ, N_FR, A_HEB, FR, FX)

参数

参数	数据类型	含义
N_SITZ	INT	底座数
XSTART	REAL	X 轴的起点(绝对)
XEND	REAL	X 轴的终点(绝对)
YEND	REAL	砂轮成品尺寸的 Y 轴位置(绝对)
ZEND	REAL	砂轮成品尺寸的 Z 轴位置(绝对)
ZU_ART	INT	左侧/右侧/两侧进给
KS	INT	机械振动
Y_A_LU	REAL	气磨削余量(增量)
Y_A_SR	REAL	余量(增量)
Z_A_LU	REAL	气磨削余量(增量)
Z_A_SR	REAL	余量(增量)
LUZ	REAL	气磨削每个冲程的进刀
SRZ	REAL	每次冲程的进给量
N_FR	INT	修光冲程
A_HEB	REAL	退刀量(增量)
FR	REAL	在换向点处的进给
FX	REAL	工作台进给

表格 9-6 参数 CYCLE426

功能

调用摆动插入循环可以加工一个小于砂轮宽的槽或平面。还可以磨削端面。在该过程中,以摆动方式磨削平面。

9.10 摆动插入 - CYCLE426

在换向点处进刀。 允许中间修整、循环中断和手轮运行。

始终在终点处对按键作出反应。

结束时退刀或者使用其它工艺的继续磨削。

允许 Y 或 Z 方向的进刀,其中 Z 可以正向或负向。

如果没有编程 Y 方向的粗加工余量,则开始 Z 方向的加工。

加工开始时可以按更高的进给量进行加工。如果通过机械振动传感装置识别出了对刀,则按照固定传声装置的进给量减去磨削进给量的值退刀。

如果没有配置机械振动传感装置输入,则在运行开始时,循环立即和手轮接通。

操作步骤

运行到余量位置,至X轴起点和Z轴位置。

开始摆动运行,在换向点进刀。

摆动运行开始后的首次进刀应使所有后续的进刀和进刀量匹配。同样,在加工中断、中间修整以及取消手轮叠加后,也进行该过程。

在中断或者修整后,轴按照卸载值运行到加工起点处。

在结束时,按照退刀量退刀,或者使用新工艺继续磨削到平面终点,如果加工的终点同时 是新加工的起点。也就是说,当摆动轴位于X轴的终点或起点并且确定了余量时,从该 位置开始继续加工。因此,可以任意结合四种工艺底座。

几何参数图

图 9-9 摆动插入 - CYCLE426

编程举例1

加工过程:

- 按照 20 m/s 的圆周速度砂轮在 Y 方向插入,分两次进给。
- 程序段 N30 中,余量 0.1 mm,每次冲程进给 0.005 mm,结束时不退刀,从而可以
 继续程序段 N40 的磨削,余量 0.02 mm,每次冲程 0.002 mm 的进给。
- 两次运行包含2次修光冲程。修光冲程使用相同的几何位置和进给。
- 将第二次加工的起点精确定义为第1次加工的终点后,进给立即开始。其标准同样为 取消激活的机械振动磨削。

```
N10 T1D1
N20 CYCLE446( 20)
N30 CYCLE426( 0, -350, 100, 10.500000, -95, 0, 0, 0, 0.100000, 0, 0, 0.005000,
0.005000, 2, 0, 1000, 30000)
N40 CYCLE426( 0, -350, 100, 10.480000, -95, 0, 0, 0, 0.020000, 0, 0, 0.005000,
0.002000, 2, 1, 1000, 30000)
M30
```

编程举例 2

加工过程:

- 按照 20 m/s 的圆周速度砂轮在 Z 方向插入,分两次进给。
- 在程序段 N30 中,机械振动 0.01mm 余量,0.01mm 正常进给,终点时机械振动每次 0.005 mm 进给,磨削时 0.002 mm 进给,终点不退刀,继续加工程序段 N40,0.02 mm 的余量,每次冲程 0.002 mm 进给。
- 两次运行包含2次修光冲程。修光冲程使用相同的几何位置和进给。
- 将第二次加工的起点精确定义为第1次加工的终点后,进给立即开始。其标准同样为 取消激活的机械振动磨削。

```
N10 T2D1
N20 CYCLE446( 20)
N30 CYCLE426( 0, 100, -350, 10.5, -95, 1, 0, 0, 0.01, 0.01, 0.005, 0.002, 2, 0,
1000, 30000)
N40 CYCLE426( 0, -350, 100, 10.5, -95.02, 1, 0, 0, 0.01, 0.01, 0, 0.002, 2, 1,
1000, 30000)
M30
```

9.11 带持续进给的平面磨削 - CYCLE427

9.11 带持续进给的平面磨削 - CYCLE427

编程

CYCLE427(N_SITZ, XSTART, XEND, ZSTART, ZEND, YEND, ZU_ART, KS, A_LU, A_SR, LUZ, SRZ, N_FR, A_HEB, FY, FX, FZ)

参数

参数	数据类型	含义
N_SITZ	INT	底座数
XSTART	REAL	X 轴的起点(绝对)
XEND	REAL	X 轴的终点(绝对)
ZSTART	REAL	Z 轴的起点(绝对)
ZEND	REAL	Z 轴的终点(绝对)
YEND	REAL	成品尺寸(绝对)
ZU_ART	INT	左侧/右侧/两侧进给
KS	INT	声发射传感器
A_LU	REAL	空磨余量(增量)
A_SR	REAL	余量(増量)
LUZ	REAL	空磨每个冲程的进给量
SRZ	REAL	每次冲程的进给量
N_FR	INT	修光冲程
A_HEB	REAL	退刀量(增量)
FY	REAL	在换向点处的进给
FX	REAL 工作台进给	
FZ	REAL	X轴每次冲程的Z轴进给

表格 9-7 参数 CYCLE427

功能

使用连续进给的平面磨削循环用于加工宽度大于砂轮的平面。 在该过程中,以摆动方式 磨削平面。 冲程在 X 轴持续进给。

9.11 带持续进给的平面磨削 - CYCLE427

在 X 和 Z 轴的换向点进行 Y 轴进刀(左/后,右/后,左/前或右/前)。

允许中间修整、循环中断和手轮运行。

始终在终点处对按键作出反应。

结束时退刀或者使用其它工艺的继续磨削。

加工开始时可以按更高的进给量进行加工。

如果通过声发射传感器识别出了对刀,则按照声发射传感器的进给量减去磨削进给量的值退刀。

如果没有配置声发射传感器输入,则在运行开始时,循环立即和手轮接通。

操作步骤

运行到余量位置,至X轴起点和Z轴起点。

开始摆动运行,在换向点进刀。

摆动运行开始后的首次进刀应使所有后续的进刀和进刀量匹配。同样,在加工中断、中间修整以及取消手轮叠加后,也进行该过程。摆动运行并不通过摆动功能执行,因为这将会在删除剩余行程时导致故障,从而耗费 PLC 的性能。

在中断或者修整后,轴按照卸载值运行到加工起点处。

在结束时,将按照退刀量退刀或在终点处使用新工艺继续加工。也就是说,当摆动轴位 于X轴的终点或起点并且确定了余量时,从该位置开始继续加工。因此,可以任意结合 四种工艺底座。

几何参数图

图 9-10 带持续进给的平面磨削 - CYCLE427

9.11 带持续进给的平面磨削 - CYCLE427

程序举例

加工过程。

- 砂轮按照 20 m/s 的圆周速度在 Z 方向以持续进给插入,分两次进给。
- 程序段 N30 中,余量 0.1 mm,每次冲程进给 0.005 mm,结束时不退刀,从而可以 继续程序段 N40 的磨削,余量 0.02 mm,每次冲程 0.002 mm 的进给。
- 两次运行包含 2 次修光冲程。修光冲程使用相同的几何位置。
- 每次冲程的 Z 轴进给在第 1 次运行时为 40 mm, 第 2 次运行为 10 mm。
- 将第二次加工的起点精确定义为第1次加工的终点后,进给立即开始。其标准同样为 取消激活的使用声发射传感器的磨削。

```
N10 T2D1
N20 CYCLE446( 20)
N30 CYCLE427( 0, 100, -350, -95, 0, 10.5, 0, 0, 0, 0.1, 0, 0.005, 2, 0, 3000, 30000,
40)
N40 CYCLE427( 0, 100, -350, -95, 0, 10.48, 0, 0, 0, 0.02, 0, 0.002, 2, 1, 3000,
30000, 10)
N50 M30
```

9.12 带间歇进给的平面磨削 - CYCLE428

9.12 带间歇进给的平面磨削 - CYCLE428

编程

CYCLE428(N_SITZ, XSTART, XEND ZSTART, ZEND, YEND, ZU_ART, ZZU_ART, KS, A_LU, A_SR, LUZ, SRZ, N_FR, A_HEB, FY, FX, FZ)

参数

参数	数据类 型	含义
N_SITZ	INT	底座数
XSTART	REAL	X 轴的起点(绝对)
XEND	REAL	X 轴的终点(绝对)
ZSTART	REAL	Z 轴的起点(绝对)
ZEND	REAL	Z 轴的终点(绝对)
YEND	REAL	成品尺寸 (绝对)
ZU_ART	INT	进给: -左侧 -右侧 两侧
ZZU_ART	INT	间歇进给: - 左侧 - 右侧 - 两侧进给
KS	INT	声发射传感器
A_LU	REAL	空磨余量(增量)
A_SR	REAL	余量(增量)
LUZ	REAL	空磨每个冲程的进给量
SRZ	REAL	每次冲程的进给量
N_FR	INT	修光冲程
A_HEB	REAL	退刀量(增量)

表格 9-8 参数 CYCLE428

9.12 带间歇进给的平面磨削 - CYCLE428

参数	数据类 型	含义
FY	REAL	在换向点处的进给
FX	REAL	工作台进给
FZ	REAL	X 轴每次冲程的 Z 轴进给

功能

使用间歇进给的平面磨削循环用于加工宽于砂轮的平面。 在该过程中,以摆动方式磨削 平面。 冲程在 X 轴的终点处进给。

进给为曲线方式,从而避免加速度突变。

在此运行中,同样可以选择 Z 方向的进给侧。

在 X 和 Z 轴的换向点进行 Y 轴进刀(左/后,右/后,左/前或右/前)。

允许中间修整、循环中断和手轮运行。

始终在终点处对按键作出反应。

结束时退刀或者使用其它工艺的继续磨削。

加工开始时可以按更高的进给量进行加工。如果通过声发射传感器识别出了对刀,则按 照声发射传感器的进给量减去磨削进给量的值退刀。如果没有配置声发射传感器输入, 则在运行开始时,循环立即和手轮接通。

通过参数值 FZ (每次冲程的进给)可以确定,X 值是否作为曲线运行的起点或终点。值 为负数时,圆弧插补也不越过X 位置。

操作步骤

运行到余量位置。运行到 X 轴起点和 Z 轴起点。

开始摆动运行,在换向点进刀。

摆动运行开始后的首次进刀应使所有后续的进刀和进刀量匹配。同样,在加工中断、中间修整以及取消手轮叠加后,也进行该过程。

摆动运行并不通过摆动功能执行,因为这将会在删除剩余行程时导致故障,从而耗费 PLC 的性能。

在中断或者修整后,轴按照卸载值运行到加工起点处。

9.12 带间歇进给的平面磨削 - CYCLE428

在结束时,将按照退刀量退刀或在终点处使用新工艺继续加工。也就是说,当摆动轴位 于X轴的终点或起点并且确定了余量时,从该位置开始继续加工。因此,可以任意结合 四种工艺底座。

几何参数图

图 9-11 带间歇进给的平面磨削 - CYCLE428

程序举例

加工过程:

- 砂轮按照 20 m/s 的圆周速度在 Z 方向以持续进给插入,分两次进给。
- 程序段 N30 中,余量 0.1 mm,每次冲程进给 0.005 mm,结束时不退刀,从而可以继续程序段 N40 的磨削,余量 0.02 mm,每次冲程 0.002 mm 的进给。
- 两次运行包含 2 次修光冲程。修光冲程使用相同的几何位置。
- 每次冲程的 Z 轴进给在第 1 次运行时为 40 mm, 第 2 次运行为 10 mm。
- 将第二次加工的起点精确定义为第1次加工的终点后,进给立即开始。其标准同样为 取消激活的使用声发射传感器的磨削。

```
N10 T2D1
N20 CYCLE446( 20)
N30 CYCLE428( 0, 100, -350, -95, 0, 10.500000, 0, 0, 0, 0, 0.1, 0, 0.005000, 2, 0,
3000, 30000, 40)
N40 CYCLE428( 0, 100, -350, -95, 0, 10.48, 0, 0, 0, 0, 0.02, 0, 0.002, 2, 1, 3000,
30000, 10)
N50 M30
```

9.13 轮廓磨削 - CYCLE429

9.13 轮廓磨削 - CYCLE429

编程

CYCLE429(N_SITZ, XSTART, ZSTART, YEND, KS, A_LU, A_SR, LUZ, SRZ, N_FR, A_HEB, FX, KONTUR)

参数

参数	数据类型	含义
N_SITZ	INT	底座数
XSTART	REAL	X轴的起点(绝对)
ZSTART	REAL	Z 轴的起点(绝对)
YEND	REAL Y 轴位置在 Z 轴(绝对)位置和 X 轴(绝对)位置和 X 轴(绝对)位置的起点	
KS	INT	机械振动
A_LU	REAL	气磨削余量 (增量)
A_SR	REAL	余量(增量)
LUZ	REAL	气磨削每个冲程的进刀
SRZ	REAL	每次冲程的进给量
N_FR	INT	修光冲程
A_HEB	REAL	退刀量 (増量)
FX	REAL	工作台进给
KONTUR	字符串	轮廓名

表格 9-9 参数 CYCLE429

功能

轮廓磨削循环用于调用自由轮廓平面的加工。

整个轮廓为轮廓子程序。

该循环只接收进给以及中断键,中断键只在轮廓终点生效。

允许中间修整、循环中断。

9.13 轮廓磨削 - CYCLE429

在每次冲程结束时,进行退刀并返回到起点。

加工必须使用有效的刀沿半径补偿(G41/G42)。

刀具半径的补偿由循环实现。

用户也可以为任意轮廓编程运行和退回运行。此时,不需要退刀量。

用户必须在轮廓程序中选择正确的 G 功能组(G41/G42),因为其中也包含了加工方向。

操作步骤

输入零点偏移的余量。

运行退刀量。

运行到 X 轴起点和 Z 轴起点。

调用轮廓程序。

退刀零点位移。

重新运行到起点,直至加工完余量。

结束后,按照退刀量退刀。

在终点位置上使用新工艺继续加工。

几何参数图

图 9-12 轮廓磨削 - CYCLE429

9.13 轮廓磨削 - CYCLE429

程序举例

加工过程:

- 轮廓磨削, 0.02 mm 余量和每次冲程 0.005 mm 进给。
- 平面偏移实现进给。 始终编程轮廓的成品尺寸。
- 结束时进行 2 次修光冲程。
- 应按照以下方式编程退刀:
 - 退回运行必须安全。
 - 退回运行包含在轮廓中。
- 示例中,使用其它进给继续加工相同轮廓。
- 轮廓必须保存为单独的子程序。在轮廓中,也包含了刀沿半径补偿的半径。

```
N10 T1D1
N20 CYCLE446( 20)
CYCLE429( 0, 100, 0, 0, 0, 0, 0.02, 0, 0.005, 2, 20, 10000, "K123")
N30 Y0
N40 CYCLE429( 1, 100, 0, 0, 0, 0.02, 0, 0.005, 2, 20, 10000, "K123")
N50 M30
```

轮廓编程举例

%_N_K123_SPF
G17
G42
G64 G90 X100 Y0
G64 X0 Y0
G64 X-100 Y10
G64 X-210 Y0
G64 X-260
RET

9.14 修整成型辊 - CYCLE430

9.14 修整成型辊 - CYCLE430

编程

CYCLE430(Y_AB, F_TVOR, F_VOR, N_AUS, N_ABR, USCH, N_AWST)

参数

表格 9-10 参数 CYCLE430

参数	数据类型	含义
Y_AB	REAL	Y 向修整量 (增量)
F_TVOR	REAL	插入进给率,单位毫米/转
F_VOR	REAL	修整进给率,单位毫米/转
N_AUS	REAL	碾压旋转
N_ABR	INT	修整次数
USCH	REAL	砂轮圆周速度
N_AWST	INT	两次修整间的工件数

功能

通过该循环可以使用成型辊修整砂轮。

每次修整冲程后,都计算当前刀具补偿中磨损参数修整过的量。 修整取决于工件计数器_GC_WKS。

操作步骤

如果给出了成型余量,则首先按其加工。如果没有传感装置,也可以用该值查找修整器。 处理成型余量时,目前还没有修整器磨损补偿。

选择有效的坐标系时,成型余量要一起转换为修整器基本尺寸。不需要用于磨削加工的

可编程零点偏移。碾压旋转是滚轮在砂轮上的停留旋转或者停留时间。

9.14 修整成型辊 - CYCLE430

几何参数图

图 9-13 修整成型辊 - CYCLE430

程序举例

加工过程:

- 2 次冲程的修整, 0.02 mm 的退刀量以及所有 5 个工件的 2 次修光旋转。
- 空冲程的数量保存在刀具数据中,刀具数据中也包含了主轴的圆周速度比例。

```
N10 T1D1
N20 CYCLE430(0.02,20,0.2,2,2,35,5)
N30 M30
```

9.15 选择砂轮圆周速度 - CYCLE446

9.15 选择砂轮圆周速度 - CYCLE446

编程

CYCLE446(SUG)

参数

表格 9-11 CYCLE446 参数

参数	数据类型	含义
SUG	实数	砂轮圆周速度值

功能

该功能用于将砂轮启动运行至所需要的圆周速度,包含有对最大砂轮圆周速度和转速的检查。超过规定圆周速度和转速时会输出提示信息(不是报警)。其数值被限定为各自的最大值。对所有装配在主轴上的砂轮(成套砂轮)进行上述检查。因此同样需要使用调整菜单,来了解所使用砂轮的大概情况。

检查与计算在当前的最大砂轮直径上进行。 检查和计算为纯计算监控功能。 在内部没有 设定用来进行安全监控的限制, 这必须由用户进行保证。

对于没有 NC 主轴的机床,如果有循环 CYCLE425,就可以通过主轴编号 ≤ 0 对必要的 转速进行同样的计算。在这种情况下 CYCLE425 会获得计算出的限制转速。用户可以将 该转速成组保存或直接输送给外部的执行器(M 功能,...)。所设置的转速可能与要求 的转速有所偏差,必须将其放入参数 _GC_PARR[5] 中。借此可以通过修整循环用正确 的转速计算出必要的修整进给率,单位为毫米/转。

9.15 选择砂轮圆周速度 - CYCLE446

10

编程

10.1 数控编程基础

10.1.1 程序名称

每个程序均有各自的程序名称。 在编制程序时可以自由选择名称,但是必须遵守以下规定:

- 开始的两个字符必须是字母
- 其后的字符可以是字母、数字或者下划线
- 不能使用分隔符(参见章节"字符集")
- 小数点只可用于表示文件扩展。
- 最多可以使用 27 个字符

例如: WERKSTUECK

10.1.2 程序结构

结构和内容

NC 程序由多个程序段构成(参见下表)。

每个程序段说明一个加工步骤。

在一个程序段中以 字 的形式写出各个指令。

在加工步骤的最后一个程序段包含一个特殊字,表明程序段结束: 例如 M2。

10.1 数控编程基础

程序 段	字	字	字	 ;注释
程序 段	N10	G0	X20	 ; 第1个程序段
程序 段	N20	G2	Z37	 ;第2个程序段
程序 段	N30	G91		 ;
程序 段	N40			
程序 段	N50	M2		;程序结束

表格 10-1 NC 程序结构

10.1.3 字结构和地址

功能/结构

字是程序段的组成单元,主要由字来表示控制系统的指令。字由以下部分组成:

- 地址符:地址符一般是一个字母
- 和数值:数值是一个数字串,可以带正负号和小数点。

正号可以省略 **(+)**。

其他地址符

一个字可以包含多个地址字母。但数值和字母之间要用符号"="隔开。

示例: CR=5.23

此外,可以用一个符号名称调用 G 功能(参见章节"指令表")。

示例: SCALE ; 打开比例系数

扩展地址

下列地址可以通过1到4个数字进行扩展,从而可以获得较多的地址:

R: 算术参数

H:H 功能

I, J, K:插补参数/中间点

此时, 需通过等号"="赋值地址(参见章节"指令表")。

示例: R10=6.234 H5=12.1 I1=32.67

10.1.4 程序段结构

功能

一个程序段包含执行某个工序所需的全部数据。

程序段通常由多个**字**和 **段结束符"L_F"**(新的一行)组成。该符号在按下换行键或<Input>键时自动生成。

10.1 数控编程基础

图 10-2 程度段结构示意图

字顺序

程序段中有多个指令时建议按如下顺序排列: N... G... X... Z... F... S... T... D... M... H...

程序段号说明

以 5 或者 10 为间隔选择程序段号。这样在以后插入程序号时仍能保持程序段号升序排列。

程序段跳过

对于不需要在每次运行中都执行的程序段,可在其程序段编号字前以斜线符号"/"标记。 程序段跳过可通过操作(程序控制: "SKP")或者匹配控制激活。如果连续多个程序段前 都以"/"标记,则它们都将被跳过。 如果执行程序时程序段跳过被激活,则所有以"/"标记的程序段都不予执行。这些程序段中 的指令也不会被考虑。程序从下一个未以斜线标记的程序段起继续执行。

注释,说明

利用加注释(说明)的方法可在程序中对程序段进行说明。注释以符号";"开始,以程序 段末尾结束。 注释和其他程序段的内容一起显示在当前程序段中。

10.1 数控编程基础

信息

信息编程在一个独立的程序段中。信息显示在专门的区域,并且一直有效,直至被一个新的信息所替代,或者程序结束。一条信息最多可以显示 65 个字符。 一个空的信息会清除以前的信息。 MSG("这是信息文本")

参见"MSG 服务"章节。

编程示例

N10	;	G&S 公司订货号 12A71
N20	;	泵部件 17, 图纸号: 123 677
N30	;	程序编制 H. Adam, 部门 TV 4
N40 MSG("ZEICHNUNGS NR.: 123677")		
:50 G54 F4.7 S220 D2 M3	;	主程序段
N60 G0 G90 X100 Z200		
N70 G1 Z185.6		
N80 X112		
/N90 X118 Z180	;	此程序段可跳过
N100 X118 Z120		
N110 G0 G90 X200		
N120 M2	;	程序结束

10.1 数控编程基础

10.1.5 符号组

在编程中可以使用以下字符,它们按一定的规则进行编译。

字母、数字

A, B, C, D, E, F, G, H, I, J, K, L, M, N,O, P, Q, R, S, T, U, V, W X, Y, Z

0, 1, 2, 3, 4, 5, 6, 7, 8, 9

小写字母和大写字母没有区分。

可打印的特殊字符

(圆括号开
)	圆括号关
[方括号开
]	方括号关
<	小于
>	大于
:	主程序,标签结束
=	分配,相等部分
/	除法,程序段跳跃
*	乘法
+	加号, 正号
-	减法, 负号

引号

"

- _ 下划线(与字母一起)
- . 小数点
- , 逗号,分隔符号。
- ; 注释引导
- % 保留,未占用
- **&** 保留,未占用
- '保留,未占用
- \$ 系统自带变量标识
- ? 保留,未占用
- ! 保留,未占用

不可打印的特殊字符

L_F:段结束符

空格:字之间的分隔符,空白字 制表键:保留,未占用

10.1.6 指令表

功能可供 SINUMERIK 802D sl plus 和 pro 使用!

地址	含义	赋值	说明	编程
D	刀具补偿号 09, 仅为整 数, 不带符号		用于某个刀具 T的补偿参数; D0 补偿值 = 0, 一个刀具最多有 9 个 D 号	D
F	进给率 0.001 99 999.999		刀具/工件轨迹速度; 根据 G94 或 G95 决定测量 单位 为毫米/分钟还是毫米/转	F
F	暂停时间(包含 0.001 99 G4 的程序段) 999.999		暂停时间,单位秒	G4 F; 单独程序段
G	G 功能 (行程条件) (行程条件)		G 功能分为各个 G 组。一 个程序段中只能有一个 G 功能组中的一个 G 功能指 令。 G 功能可以是模态有效(直 到被同组中其他功能替 代),或者是程序段方式有 效的(只在写入的程序段中 有效)。 G 功能组	G 或者符号名称,例如: CIP
G0	快速直线插补		1: 运动指令	G0 X Z
G1 *	按进给率直线插补		(插补方式)	G1 XZ F
G2	顺时针圆弧插补			G2 X Z I K F; 圆心和终点 G2 X Z CR= F; 半径和终点 G2 AR= I K F;张 角和圆心 G2 AR= X Z F; 张角和终点
G3	逆时针圆弧插补			G3; 其它情况下同 G2

地址	含义	赋值	说明	编程
CIP	通过中间点进行圆弧插补			CIP X Z I1= K1= F ;I1, K1 是中间点
СТ	带切线过渡的圆弧插补			N10 N20 CT Z X F圆 弧,与前一段轮廓 N10 是切线过渡
G4	暂停时间 回参考点运行		2: 特殊动作, 暂停时间 程序段方式有效	G4 F; 单独程序段 F: 时间,单位秒 或者 G4 S; 单独程序段, S:主轴转数
G74				G74 X1=0 Z1=0;单独程 序段 (加工轴名称!)
G75	回固定点运行			G75 X1=0 Z1=0;单独程 序段 (加工轴名称!)
TRANS	可编程的偏移		3: 写存储器	TRANS X Z; 单独程 序段
SCALE	可编程的比例系数		程序段方式有效	SCALE X Z ;给定轴 方向的 比例系数, 单独程序段
ROT	可编程旋转			ROT RPL=;在当前的 平面中旋转 G17 至 G19,单独程序 段
MIRROR	可编程的镜像			MIRROR X0;改变方向 的 坐标轴, 单独程序段
ATRANS	可编程附加偏移			ATRANS X Z; 单独 程序段

地址	含义	赋值	说明	编程
ASCALE	附加的可编程比例系	系数		ASCALE X Z;给定轴 方向的 比例系数, 单独程序段
AROT	附加的可编程旋转			AROT RPL=;在当前 G17 至 G19 平面中附加旋转 ,单独程序段
AMIRROR	附加的可编程镜像			AMIRROR X0;改变方 向的 坐标轴, 单独程序段
G25	主轴转速下限 或者 工作区域下限			G25 S;单独程序段 G25 X Z;单独程序段
G26	主轴转速上限 或者 工作区域上限			G26 S;单独程序段 G26 X Z;单独程序段
G17	X/Y 平面		6: 平面选择	
G18 *	Z/X 平面			
G19	Y/Z 平面			
G40 *	刀具半径补偿"关"		7: 刀具半径补偿	
G41	刀具半径补偿,轮廓	廓左边	模态有效	
G42	刀具半径补偿,轮廓	廓右边		
G500	取消可设定的零点体	扁移	8: 可设定的零点偏移	
G54	第1可设定的零点(扁移	模态有效	
G55	第2可设定的零点(扁移		
G56	第3可设定的零点(扁移		
G57	第4可设定的零点(扁移		
G58	第5可设定的零点(扁移		
G59	第6可设定的零点(扁移		

地址	含义	赋值	说明	编程
G53	程序段方式取消可证	设定的零点偏移	9:取消可设定的零点偏移 程序段方式有效	
G153	程序段方式取消可; 包括基本框架	没定的零点偏移,		
G60 *	准停		10: 定位性能	
G64	连续路径运行		模态有效	
G9	程序段方式准停		11: 准停,程序段方式有效 程序段方式有效	
G601 *	G60、G9 方式下的	精准停	12: 准停窗口	
G602	G60、G9 方式下的	粗准停	模态有效	
G70	英制尺寸		13: 英制/公制尺寸	
G71 *	公制尺寸		模态有效	
G700	英制尺寸,也用于进给 F			
G710	公制尺寸,也用于;	进给 F		
G90 *	绝对尺寸		14: 绝对/增量尺寸	
G91	增量尺寸输入		模态有效	
G94 *	进给率 F,单位毫为	长/分钟	15: 进给/主轴	
G95	主轴旋转进给率 毫	米/转	模态有效	
G96	使用恒定切削速度 (F 单位毫米/转,	S 单位米/分)		G96 S LIMS= F
G97	取消使用恒定切削	速度		
G450 *	过渡圆弧		18: 刀具半径补偿时的拐角	
G451	交点		特性 模态有效	
BRISK *	轨迹跳跃加速		21: 加速度特性	
SOFT	轨迹平滑加速		模态有效	
FFWOF *	前馈控制 关		24: 预控制	
FFWON	前馈控制 开		模态有效	
WALIMO N *	工作区域限制 开		28: 工作区极限 模态有效	;适用于所有轴,通过设 定数据激活, 通过 G25、G26 设置值

地址	含义	赋值	说明	编程
WALIMOF	工作区域限制 关			
G290 *	西门子方式		47: 外部 NC 语言	
带*标记的 保持了标准	功能在程序启动时生 设置)。	效(工艺"磨削"控制	别系统的供货状态:如果没有是 	另外编程并且机床制造商
H0=	H功能	± 0.0000001 9999 9999 (8 个士进制数	传送给 PLC 的数值, 由机床制造商确定其定义	H0= H9999= 例加,H7=23.456
刊0- 到 H9999=		 位)或者使用指数形式: ±(10-300 10+300) 		
1	插补参数	±0.001 99 999.999 螺纹: 0.001 2000.000	G2、G3 时 -> 圆心 X 轴坐 标或者 G33, G34, G35 G331, G332->螺距	参见 G2, G3 和 G33, G34, G35
К	插补参数	±0.001 99 999.999 螺纹: 0.001 2000.000	Z 轴坐标,其余的同 I	参见 G2, G3 和 G33, G34, G35
11=	圆弧插补的中间点	±0.001 99 999.999	用 CIP 进行圆弧插补的 X 轴坐标	参见 CIP
K1=	圆弧插补的中间点	±0.001 99 999.999	用 CIP 进行圆弧插补的 Z 轴坐标	参见 CIP
L	子程序,名称和调 用	7个十进制位数, , 不带符号	自由命名,也可选择 L1L99999999; 从而可以在一个单独程序段 中调用子程序(UP), 注意:L0001不等于L1 名称"LL6"供换刀子程序备 用!	L; 单独程序段

地址	含义	赋值	说明	编程
Μ	附加功能	0 99 仅为整数,不带 符号	用于释放开关操作, 例如:"冷却液开"。 一个程序段中最多有5个 M功能。	M
МО	编程停止		在程序段末尾编入 M0 停止 程序执行,按下"NC 启动" 键继续执行	
M1	有条件停止		和 M0 一样,仅在出现特殊 信号后才生效(程序控制: "M01")。	
M2	程序结束		在最后的程序段中写入	
M30	-		保留,未占用	
M17	-		保留,未占用	
M3	主轴顺时针旋转(用于主主轴)			
M4	主轴逆时针旋转 (用于主主轴)			
M5	主轴停止(用于主主轴)			
Mn=3	主轴顺时针旋转(用于主轴 n)		n = 1 或者 = 2	M2=3;主轴 2 顺时针停 止
Mn=4	主轴逆时针旋转(月	目于主轴 n)	n = 1 或者 = 2	M2=4;主轴 2 逆时针停 止
Mn=5	主轴停(用于主轴)	1)	n = 1 或者 = 2	M2=5;主轴2停
M6	换刀		仅在通过机床数据设定用 M6 换刀时可使用,否则直 接用 T 指令进行换刀	
M40	自动变换齿轮级 (用于主主轴)			
Mn=40	自动变换齿轮级 (用于主轴 n)		n = 1 或者 = 2	M1=40; 主轴 1 自动变换 ; 齿轮级
M41 到 M45	齿轮级 1 到 5 (用于主主轴)			
Mn=41 到 Mn=45	齿轮级 1 到 5 (用于主轴 n)		n = 1 或者 = 2	M2=41; 主轴 2 的齿轮级 1

地址	含义	赋值	说明	编程
M70, M19	-		保留,未占用	
М	其他 M 功能		控制系统端的功能未确定,可由机床制造商自由设定	
Ν	程序段号 — 副程 序段	0 9999 9999 仅为整数,不带 符号	为了识别程序段可以使用编 号; 编号位于程序段的开头	N20
:	程序段号 - 主程序 段	0 9999 9999 仅为整数,不带 符号	特别的程序段标记-替代 N; 该程序段必须包含用 于下列完整加工段的所有指 令	:20
Р	子程序调用次数	19999 仅为整数,不带 符号	在同一程序段中多次调用	L781 P;单独程序段 N10 L871 P3;调用三次
R0 到 R299	计算参数	<pre>± 0.0000001 9999 9999 (8 个十进制数 位)或者使用指 数形式: ± (10-300 10+300)</pre>		R1=7.9431 R2=4 使用指数: R1=-1.9876EX9 ; R1=-1 987 600 000
运算功能	_		除了用 + - * / 4 则基本运算 外还有以下的运算功能:	
SIN()	正弦	单位,度		R1=SIN(17.35)
COS()	余弦	单位,度		R2=COS(R3)
TAN()	正切	单位,度		R4=TAN(R5)
ASIN()	反正弦			R10=ASIN(0.35) ; R10:20.487 度
ACOS()	反余弦			R20=ACOS(R2) ; R20 : 度
ATAN2 (,)	反正切 2		矢量和的角度由 2 个互相垂 直的矢量得出。第 2 个给定 的矢量总是作为角度参考。 角度范围:-180 至 +180 度	R40=ATAN2(30.5,80.1); R40:20.8455 度
SQRT()	平方根			R6=SQRT(R7)

地址	含义	赋值	说明	编程
POT()	平方			R12=POT(R13)
ABS()	绝对值			R8=ABS(R9)
TRUNC()	整数			R10=TRUNC(R2)
LN()	自然对数			R12=LN(R9)
EXP()	指数函数			R13=EXP(R1)
RET	子程序结束		替代 M2 - 保证连续路径运 行	RET;单独程序段
S	主轴转速 (主主轴)	0.001 99 999.999	主轴转速的计量单位是转/ 分钟	S
S1=	主轴 1 的 转速	0.001 99 999.999	主轴转速的计量单位是转/ 分钟	S1=725;主轴1的转速 是725转/分钟
S2=	主轴 2 的 转速	0.001 99 999.999	主轴转速的计量单位是转/ 分钟	S2=730;主轴2的转速 是730转/分钟
S	G96 有效时的切削 速度	0.001 99 999.999	G96 切削速度计量单位: 米/分 功能 - 只用于主主轴	G96 S
S	和 G4 一起编程 暂停时间	0.001 99 999.999	主轴暂停转数	G4 S; 单独程序段
т	刀具号	1 32 000 仅为整数,不带 符号	可直接用 T 指令或者 M6 进 行换刀。可在机床数据中进 行设置。	Т
x	轴	±0.001 99 999.999	位移信息	X
Z	轴	±0.001 99 999.999	位移信息	Z
AC	绝对坐标	-	对于某个特定轴,可以用绝 对尺寸按程序段方式说明其 终点或者中心点,而不是用 G91。	N10 G91 X10 Z=AC(20); X 轴增量尺寸 Z 绝对尺寸
ACC[<i>轴</i>]	百分比加速度补偿	1 200,整数	轴或者主轴的加速度补偿 值,以百分数表示	N10 ACC[X]=80;表示 X 轴 80% N20 ACC[S]=50 ;表示主 轴 50%

地址	含义	赋值	说明	编程
ACP	回转轴、主轴从正 方向运行至某位置 的 绝对坐标	-	对于回转轴,可以按程序段 方式以不同于 G90/G91 的 方法用 ACP() 说明其终点 位置,也适用于主轴定位时	N10 A=ACP(45.3);从正 方向运行至 轴的绝对位置 A N20 SPOS=ACP(33.1); 主轴定位
ACN	回转轴、主轴从负 方向运行至某位置 的 绝对坐标	-	对于回转轴,可以按程序段 方式以不同于 G90/G91 的 方法用 ACN() 说明其终点 位置,也适用于主轴定位时	N10 A=ACN(45.3);从负 方向运行至 轴的绝对位置 A N20 SPOS=ACN(33.1); 主轴定位
ANG	轮廓段中的直线角 度	±0.00001 359.99999	单位为度, 当平面中终点坐标已知 或者 多个程序段编程轮廓而最后 的终点坐标未知时,在G0 或者G1下定义直线的一种 方法	N10 G1 X Z N11 X ANG= 或者通过多个程序段的轮 廓: N10 G1 X Z N11 ANG= N12 X Z ANG=
AR	圆弧插补张角	0.00001 359.99999	单位为度,在 G2/G3 中确 定圆弧的一种方法	参见 G2、G3
CALL	间接调用循环	-	循环调用的特殊形式,没有 参数传输,循环的名称以变 量存储, 只用于循环内部	N10 CALL VARNAME; 变量名
CHF	倒角 一般应用	0.001 99 999.999	在两个轮廓间插入给定底长 的倒角	N10 X Z CHF= N11 X Z
CHR	倒角 轮廓基准中	0.001 99 999.999	在两个轮廓间插入给定腰长 的倒角	N10 X Z CHF= N11 X Z
CR	圆弧插补半径	0.010 99 999.999 圆弧加负号:大 于半圆	G2/G3 中确定圆弧的一种 方法	参见 G2、G3
CYCLE	加工循环	仅预设值	使用单独的程序段调用加工 循环,必须赋值提供的参数 用 MCALL 或者 CALL 可以 进行专用循环调用	

地址	含义	赋值	说明	编程
CYCLE40 6	砂轮的 Z 轴定位			N10 CYCLE406(); 单独程序段
CYCLE40 7	安全位置			N10 CYCLE407(); 单独程序段
CYCLE40 8	加工循环3级式插之 磨、修光)	入摆动(粗磨、精		N10 CYCLE408(); 单独程序段
CYCLE40 9	3级式平面磨削加口 磨、研磨)	二循环(粗磨、精		N10 CYCLE409(); 单独程序段
CYCLE42 6	摆动插入			N10 CYCLE426(); 单独程序段
CYCLE42 7	带持续进给的平面磨削			N10 CYCLE427(); 单独程序段
CYCLE42 8	带间歇进给的平面磨削			N10 CYCLE428(); 单独程序段
CYCLE42 9	轮廓磨削			N10 CYCLE429(); 单独程序段
CYCLE43 0	修整成型辊子			N10 CYCLE430(); 单独程序段
DC	回转轴和主轴直接 运行至某点的绝对 坐标	-	对于回转轴,可以按程序段 方式以不同于 G90/G91 的 方法用 DC() 说明其终点 位置,也适用于主轴定位时	N10 A=DC(45.3); 直接 运行至轴的位置 A N20 SPOS=DC(33.1);主 轴定位
DEF	定义指令		直接在程序开端定义 BOOL, CHAR, INT, REAL 类型的局部用户变量	DEF INT VARI1=24, VARI2; INT 类型的 2 个 变量 ;名称由用户确定
FRC	用于倒角/倒圆的 0, >0 程序段有效进给率		FRC=0 时,进给率 F 生效	计量单位参见 F、G94 、 G95 倒角/倒圆参见 CHF、 CHR、RND
FRCM	倒角/倒圆的模态 有效进给率	0, >0	FRCM=0 时,进给率 F 生 效	计量单位参见 F、G94、 G95 倒圆、模态有效倒圆参见 RND、RNDM

地址	含义	赋值	说明	编程
FXS [<i>轴</i>]	运行到固定挡块	=1: 选中 =0:撤销选择	<i>轴:</i> 使用机床轴名称	N20 G1 X10 Z25 FXS[Z1]=1 FXST[Z1]=12.3 FXSW[Z1]=2 F
FXST [<i>轴</i>]	运行到固定档块 的夹紧扭矩	> 0.0 100.0	单位:%,最大为驱动最大 扭矩的 100%, <i>轴:</i> 使用机床轴名称	N30 FXST[Z1]=12.3
FXSW [<i>轴</i>]	运行到固定档块的 监控窗口	> 0.0	单位:毫米或者度,视轴的 情况而定, <i>轴:</i> 使用机床轴名称	N40 FXSW[Z1]=2.4
GOTOB	向后跳转指令	-	和跳转标记符一起使用,向 程序开始方向跳转至标识的 程序段,	N10 LABEL1: N100 GOTOB LABEL1
GOTOF	向前跳转指令	-	和跳转标记符一起使用,向 程序结束方向跳转至标识的 程序段,	N10 GOTOF LABEL2 N130 LABEL2:
IC	增量坐标	-	对于某个特定轴,可以用增 量尺寸按程序段方式说明其 终点,而不是用 G90 。	N10 G90 X10 Z=IC(20); Z 轴增量尺寸 X 绝对尺寸
IF	跳转条件	-	满足跳转条件时跳转至带标 记符:,否则至下一指令/程 序段, 一个程序段中可以包含多个 IF 指令。 比较运算符: ==等于, <>不等于 >大于, <小于 >= 大于等于 <= 小于等于	N10 IF R1>5 GOTOF LABEL3 N80 LABEL3:
LIMS	G96、G97时的主 轴转速上限	0.001 99 999.999	在 G96 功能生效时 - 恒定 切削速度以及 G97 时限制 主轴转速	参见 G96
MEAS	测量,带剩余行程 删除	+1 -1	=+1: 测量输入 1, 上升沿 =-1:测量输入 1, 下降沿	N10 MEAS=-1 G1 X Z F

地址	含义	赋值	说明	编程
MEAW	测量,不带剩余行 程删除	+1 -1	=+1: 测量输入 1, 上升沿 =-1:测量输入 1, 下降沿	N10 MEAW=1 G1 X Z F
\$A_DBB[n] \$A_DBW[n] \$A_DBD[n] \$A_DBR[n]	数据字节 数据字 数据双字 REAL 数据		PLC 变量的读和写	N10 \$A_DBR[5]=16.3; 写入 REAL 变量 ;偏移位置 5 ; (NC 和 PLC 间的位 置、类型和含义 一致)
\$AA_FXS [<i>轴</i>]	运行到固定档块的 状态	-	值:05 <i>轴</i> :机床轴名称	N10 IF \$AA_FXS[X1]==1 GOTOF
\$AA_MM [<i>轴</i>]	在机床坐标系中轴 的测量结果	-	<i>轴:</i> 测量中运行的轴名称 (X, Z)	N10 R1=\$AA_MM[X]
\$AA_MW [<i>轴</i>]	在工件坐标系中轴 的测量结果	-	<i>轴</i> 测量中运行的轴名称 (X, Z)	N10 R2=\$AA_MW[X]
\$AC_MEA [1]	测量任务状态	-	供货状态: 0:初始状态, 测量头未接通 1:已接通测量头	N10 IF \$AC_MEAS[1]==1 GOTOF;如果接通了 测量头,程序继续
\$A TIME	运行时间定时器: \$AN_SETUP_TIM E \$AN_POWERON_ TIME \$AC_OPERATIN G_TIME \$AC_CYCLE_TIM E \$AC_CUTTING_T IMF	0.0 10+300 分钟(只读值) 分钟(只读值) s s 秒	系统变量: 自控制系统上次启动后的时间 自控制系统正常启动后的时间 所有 NC 程序的总运行时间 所选 NC 程序的运行时间 刀具工作时间	N10 IF \$AC_CYCLE_TIME==50 .5

地址	含义	赋值	说明	编程
\$AC PARTS	工件计数器: \$AC_TOTAL_PAR TS \$AC_REQUIRED _PARTS \$AC_ACTUAL_PA RTS \$AC_SPECIAL_P ARTS	0 999 999 999, 整数	系统变量: 工件实际总量 工件设定量 工件当前实际量 用户工件定义量	N10 IF \$AC_ACTUAL_PARTS= =15
\$AC_ MSNUM	有效的主主轴号		只读	
\$P_ MSNUM	编程的主主轴号		只读	
\$P_NUM_ SPINDLE S	设计主轴的数量		只读	
\$AA_S[n]	主轴 n 的实际速度		主轴号 n = 1 或者 = 2, 只读	
\$P_S[n]	最后编程的主轴 n 的速度		主轴号 n = 1 或者 = 2, 只读	
\$AC_ SDIR[n]	主轴 n 当前的旋转 方向		主轴号 n = 1 或者 = 2, 只读	
\$P_ SDIR[n]	最后编程的主轴 n 的 旋转方向		主轴号 n = 1 或者 = 2, 只读	
\$P_ TOOLNO	有效刀具号 T	-	只读	N10 IF \$P_TOOLNO==12 GOTOF
\$P_TOOL	有效刀具的有效 D 号	-	只读	N10 IF \$P_TOOL==1

地址	含义	赋值	说明	编程
MSG ()	显示信息	最多 65 个字符	信息文本在双引号中	MSG("MELDETEXT"); 单独程序段
				条信息
RND	倒圆	0.010 99 999.999	在两个轮廓间插入规定半径 值的圆弧切线过渡	N10 X Z RND= N11 X Z
RNDM	模态倒圆	0.010 99 999.999 0	-在所有以下的轮廓角间插 入规定半径值的圆弧切线过 渡,允许用特殊的 FRCM= - 关闭模态倒圆	N10 X Y RNDM=.7.3 ;模态倒圆开 N11 X Y N100 RNDM=.0 ;模态倒 圆关
RPL	ROT、AROT 的旋 转角度	±0.00001 359.9999	单位为度,G17 到 G19 当 前平面中的可编程旋转角	参见 ROT, AROT
SET(, , ,) REP()	设置变量区 的值		SET:不同的值,从标注的元 素 到:值的相应数目 REP:相同值,从给定的元 素到区域终点	DEF REAL VAR2[12]=REP(4.5);所 有元素,值4.5 N10 R10=SET(1.1,2.3,4.4); R10=1.1,R11=2.3, R4=4.4
SETMS(n) SETMS	确定主轴为主主轴	n = 1 或者 n = 2	n:主轴号, 如果只设定了 SETMS,则 默认的主主轴生效	N10 SETMS(2) ; 单独程 序段, 主轴 2 = 主主轴
SF	G33 时的螺纹起始 角	0.001 359.999	单位为度,在 G33 时螺纹 起始角偏移设定的角度值	参见 G33
SPI (n)	转换主轴号 n 为进 给轴名称,		n = 1 或者 = 2, 轴名称:比如: "SP1"或"C"	
SPOS SPOS(n)	主轴位置	0.0000 359.9999	单位为度, 主轴停止在规定 位置(主轴的设计必须满足 技术要求): 位置控制) 主轴号 n: 1 或 2	N10 SPOS= N10 SPOS=ACP() N10 SPOS=ACN() N10 SPOS=IC() N10 SPOS=DC()
10.1 数控编程基础

地址	含义	赋值	说明	编程
STOPFIF O	停止快速加工程序 段		特殊功能, 载入预处理程序缓存中,直 到 STARTFIFO,"预处理程 序缓存已满"或者"程序结 束"被识别时为止。	STOPFIFO;单独程序 段,开始缓存 N10 X N20 X
STARTFI FO	开始快速加工程序 段		特殊功能, 从预处理程序缓存载出。	N30 X STARTFIFO;单独程序 段,结束缓存
STOPRE	预处理停止		特殊功能,当 STOPRE 之 前的程序段结束后,才可以 编译下一程序段	STOPRE;单独程序段
G05	激活斜置切入		只可以使用倾斜轴 (TRAANG)	G05 X
G07	返回起始位置		只可以使用倾斜轴 (TRAANG)	G07 X Z

10.2 位移说明

10.2 位移说明

10.2.1 尺寸编程

在本章中您可以查找到各种指令,利用它们可以对从一个图纸中提取出的尺寸进行直接编程。其优点是,不必对 NC 程序设置进行大量的计算。

说明

在本章中描述的指令在大多数情况下位于 NC 程序的开始部分。这些功能的整理与专利 申请无关。举例说工作平面的选择也完全可以在 NC 程序中的其它地方。本节及后面的 章节主要给您作一个指南,目的在于介绍 NC 程序的"完整"结构。

典型尺寸一览

大多数 NC 程序的基础部分是一份带有具体尺寸的图纸。

在转换为 NC 程序时有提示帮助,将工件图纸的尺寸准确的接受到加工程序中。它们可以是:

- 绝对尺寸,G90模态有效用于程序段中的所有轴,直至通过下一个程序段中的G91 进行撤销。
- 绝对尺寸, X=AC(值) 只有这个值适用于给定轴并且不受 G90/G91 的影响。也可以用于所有的轴、以及主轴定位 SPOS、SPOSA 和插补参数 I、J、K。
- 绝对尺寸, X=DC(值) 直接按最短路径运行到位置上,只有这个值适用于给定的回转轴并且不受 G90/G91 的影响。也可以用于主轴定位 SPOS、SPOSA。
- 绝对尺寸, X=ACP(值)按正方向逼近位置,只有这个值适用于在机床数据中范围设置在 0...<360 度的回转轴。
- 绝对尺寸,X=ACN(值)按负方向逼近位置,只有这个值适用于在机床数据中范围设置在 0...<360 度的回转轴。
- 增量尺寸, G91 模态有效用于程序段中的所有轴, 直至通过下一个程序段中的 G90 进行撤销。
- 增量尺寸,X=IC(值)只有这个值适用于给定轴并且不受 G90/G91 的影响。也可以用于所有的轴、以及主轴定位 SPOS、SPOSA 和插补参数 I、J、K。
- 英寸尺寸,G70用于程序段中的所有线性轴,直至通过下一个程序段中的G71进行 撤销。

- 米制尺寸,G71用于程序段中的所有线性轴,直至通过下一个程序段中的G70进行 撤销。
- 英寸尺寸如 G70, 也用于进给率和带有长度的设置参数。
- 米制尺寸如 G71,也用于进给率和带有长度的设置参数。

10.2.2 平面选择:G17 到 G19

功能

为分配**刀具半径补偿或者刀具长度补偿**应首先从三根轴 X、Y、Z中选出两根轴组成一个 平面。然后在该平面中激活刀具半径补偿。

如果使用钻头和铣刀,应分配垂直于所选平面的轴的长度补偿(长度 1)。请参见章节 "刀具和刀具补偿"。特殊情况下也可以进行 3 维长度补偿。

平面选择的其他影响请参见各自的功能(例如:章节"支持轮廓段编程")。

单个平面也可用于定义顺时针或逆时针的**圆弧插补方向**。在运行圆弧的平面中规定了横 坐标和纵坐标,由此也确定了圆弧方向。运行圆弧的平面可以和生效的直线平面(G17 到 G19)不同(参见章节"轴的运行")。

可以选择以下平面和轴分配:

表格 10- 2	平面和轴分配
----------	--------

G 功能	平面(横坐标/纵坐 标)	垂直于平面的轴 (钻削/铣削时的长度补偿轴)
G17	X/Y	Z
G18	Z/X	Y
G19	Y/Z	X

10.2 位移说明

程序举例

N10 G17 T... D... M... ;选择 X/Y N20 ... X... Y... Z... ; Z 轴的刀具长度补偿(长度 1)

10.2.3 绝对/增量尺寸: G90, G91, AC, IC

功能

使用指令 G90/G91 描述写入的 X, Y, Z,.. 的位移值: G90 时为坐标终点; G91 时为待运 行的轴行程。 G90/G91 适用于所有轴。

在编程了 G90/G91 的程序段中,可通过 AC/IC 为特定轴设定位移值(程序段方式生效)。

这两个指令不定义到达终点的**轨迹**。而是由 G 功能组 (G0,G1,G2,G3,... 参见章节"轴运行") 决定。

编程

G90	;绝对尺寸		
G91	;增量尺寸		
X=AC()	;为特定轴(此处:	X轴)设定绝对位移,	程序段方式生效
X=IC()	;为特定轴(此处:	X 轴)设置增量位移,	程序段方式生效

10.2 位移说明

图 10-4 图纸中不同的数据尺寸

绝对尺寸设定 G90

绝对尺寸设定的参考点为**当前有效坐标系的零点**(工件坐标系或当前工件坐标系或者机床 坐标系)。并且也取决于当前生效的偏移:可编程零点偏移、可设定零点偏移或者无零点 偏移。

程序启动后 G90 在**所有轴**上一直生效,直到在后面的程序段中由 G91 (增量尺寸设定) 替代为止(模态有效)。

增量尺寸设定(G91)

在增量尺寸设定中,位移数据值为**待运行的轴位移。运行方向**通过符号设定。 **G91**在所有坐标轴上生效,并且可在后面的程序段中由 **G90**(绝对尺寸设定)替换。

用 =AC(...), =IC(...) 定义

终点坐标后必须写入一个等号。数值要写在圆括号中。 也可以用 =AC(...) 定义圆心坐标。否则圆心参考点为圆弧的起始点。

编程示例

N10 G90 X20 Z90	; 绝对尺寸设定
N20 X75 Z=IC(-32)	; x 轴仍为绝对尺寸, z 轴为增量尺寸
N180 G91 X40 Z20	; 切换到增量尺寸设定
N190 X-12 Z=AC(17)	; x 轴仍为增量尺寸, z 轴为绝对尺寸

.

10.2 位移说明

10.2.4 公制尺寸和英制尺寸: G71, G70, G710, G700

功能

工件标注尺寸可能不同于控制系统的系统缺省设置(英寸或毫米),这些标注尺寸可以直接输入到程序中。控制系统会在基础系统中完成必要的转换工作。

编程

G70	;英制尺寸
G71	;公制尺寸
G700	; 英制尺寸, 也用于进给 F
G710	; 公制尺寸, 也用于进给 F

编程示例

```
      N10 G70 X10 Z30
      ; 英制尺寸

      N20 X40 Z50
      ; G70 继续有效

      ...
      ; 从此时开始使用公制尺寸
```

说明

根据**缺省设置**控制系统可将所有几何值都用公制**或**英制尺寸表示。刀具补偿值和可设定零 点偏移值,以及它们的显示都被作为几何值;同样,进给率 F 的单位可以为毫米/分或英 寸/分。缺省设置可以通过机床数据设定。

本操作说明中所给出的示例均使用公制尺寸。

G70 或 G71 对所有与工件直接相关的几何数据生效,系统相应地使用英制尺寸或公制尺寸,例如:

- 在 G0,G1,G2,G3,G33, CIP, CT 程序段中的位移数据 X, Y, Z
- 插补参数 I, J, K (也包括螺距)
- 圆弧半径 **CR**
- 可编程的零点偏移(TRANS, ATRANS)
- 极半径 RP

10.2 位移说明

所有其它不与工件直接相关的几何数据,例如:进给率、刀具补偿、**可设定的**零点偏移 等,将不受 **G70/G71** 影响。

但是 G700/G710 会影响进给率 F (英寸/分、英寸/转或者毫米/分、毫米/转)。

10.2.5 极坐标,极点定义:G110,G111,G112

功能

工件上的点除了可按通常方式用直角坐标系 (X, Y, Z) 定义外,还可以用极坐标定义。

如果一个工件或一个零部件,当其尺寸以到一个中心点(极点)的半径和角度来设定时, 往往就使用极坐标。

平面

极坐标以使用 G17 到 G19 激活的平面为基准。也可以另外给定垂直于该平面的第 3 轴。这样可以在柱面坐标中编程立体数据。

极半径 RP=...

极坐标半径定义该点到极点的距离。 该值一直保存,只有当极点发生变化或平面更改后 才需重新编程。

极角 AP=...

极角始终以平面中的水平轴(横坐标)为基准(例如 G17 中: X 轴)。可以输入正角度 或负角度值。

极角一直保存,只有当极点发生变化或平面更改后才需重新编程。

10.2 位移说明

图 10-5 不同平面正方向上的极半径和极角

定义极点,编程

G110	; 定义极点,相对于上次编程的设定位置 (在平面中,例如 G17: X/Y)
G111	; 定义极点,相对于当前工件坐标系的零点(在平面中,例如 G17: X/Y)
G112	;定义极点,相对于上一个有效的极点,平面不变

说明

定义极点

- 极点也可以通过极坐标定义。这仅在极点已经存在时才有意义。
- 如未定义极点,则会将当前工件坐标系的零点视为极点。

编程示例

```
      N10 G17
      ; X/Y 平面

      N20 G111 X17 Y36
      ; 当前工件坐标系中的极坐标

      ...
      ; 极坐标中相对于前一极点的新极点

      N90 ... AP=12.5 RP=47.679
      ; 极坐标

      N100 ... AP=26.3 RP=7.344 Z4
      ; 极坐标和 Z 轴(= 圆柱坐标)
```

通过极坐标运行

和直角坐标系编程的位置一样,可以通过以下方式逼近极坐标编程的位置:

- G0-快速移动直线插补
- G1 使用进给率的直线插补
- G2 顺时针方向的圆弧插补
- G3 逆时针方向的圆弧插补

(参见章节"轴运行")

10.2 位移说明

10.2.6 可编程的零点偏移:TRANS, ATRANS

功能

在下列情况下可以使用可编程的零点偏移:

- 工件在不同的位置有重复的形状/结构
- 选择了新的参考点说明尺寸
- 粗加工的余量

由此就产生一个当前工件坐标系。新输入的尺寸便以此坐标系为基准。 偏移适用于所有轴。

编程

TRANS X Y Z	; 可编程的零点偏移指令清除之前关于偏移、旋转、比例系数、镜像的指令
ATRANS X Y Z	; 可编程的零点偏移指令, 补充当前指令
TRANS	; 指令不带数值: 清除之前关于偏移、旋转、比例系数、镜 像的指令

TRANS, ATRANS 指令始终要求各自的单独程序段。

图 10-6 可编程零点偏移举例

程序举例

 N20 TRANS X20 Y15
 ; 可编程的偏移

 N30 L10
 ; 子程序调用,包含待偏移的几何量

 ...
 ,...

 N70 TRANS
 ; 取消偏移

 子程序调用 - 参见章节"子程序"

10.2.7 可编程旋转: ROT, AROT

功能

在当前平面 G17 或 G18 或 G19 中执行旋转,值为 RPL=...,单位是度。

编程

 ROT RPL=...
 ; 可编程旋转指令清除之前关于偏移、旋转、比例系数、镜像的指令

 AROT RPL=...
 ; 可编程旋转指令,补充当前指令

ROT; 指令不带数值: 清除之前关于偏移、旋转、比例系数、镜像的指令 **ROT**, **AROT** 指令始终要求各自的单独程序段。

图 10-7 定义不同平面内的正向旋转角

10.2 位移说明

图 10-8 可编程的偏移和旋转编程举例

程序举例

```
      N10 G17 ...
      ; X/Y 平面

      N20 TRANS X20 Y10
      ; 可编程的偏移

      N30 L10
      ; 子程序调用,包含待偏移的几何量

      N40 TRANS X30 Y26
      ; 新偏移

      N50 AROT RPL=45
      ; 附加旋转 45 度

      N60 L10
      ; 子程序调用

      N70 TRANS
      ; 删除偏移和旋转

      ...
```

子程序调用 - 参见章节"子程序"

10.2.8 可编程的比例系数: SCALE, ASCALE

功能

用 SCALE, ASCALE 可以为所有坐标轴编程一个比例系数。 按此比例放大或缩小各给定 轴上的位移。 当前设定的坐标系用作比例缩放的参照标准。

编程

SCALE X Y Z	; 可编程的比例系数、镜像的指令	数指令,清除之前关	于偏移	、旋转、比	例系
ASCALE X Y Z	; 可编程的比例系	数指令,补充当前指	\		
SCALE	;指令不带数值: 指令	清除之前关于偏移、	旋转、	比例系数、	镜像的

SCALE、ASCALE 指令始终要求各自的单独程序段。

说明

.

图形为圆时,两个轴的比例系数必须一致。 如果在 SCALE/ASCALE 有效时编程 ATRANS,则偏移量也同样被比例缩放。

程序举例

N10 G17	; X/Y 平面
N20 L10	; 编程的原始轮廓
N30 SCALE X2 Y2	; x 轴和 y 轴方向的轮廓放大 2 倍
N40 L10	
N50 ATRANS X2.5 Y18	; 值 比例系数相同 !
N60 L10	; 放大并移动轮廓
子程序调用 - 参见章节"子程序"	

10.2 位移说明

10.2.9 可编程镜像: MIRROR, AMIRROR

功能

用 MIRROR, AMIRROR 通过坐标轴对工件形状执行镜像操作。所有编程了镜像的轴运行均反向。

编程

MIRROR X0 Y0 Z0	;可编程的镜像,	清除之前偏移、	旋转、比例缩放	效、镜像指令
AMIRROR X0 Y0 Z0	;可编程的镜像,	补充当前指令		
MIRROR	; 不赋值: 清除	之前的偏移、旋	转、比例缩放、	镜像指令
MIRROR, AMIRROR 指令 须要定义一个数值。	需要编写在单独的	程序段中。坐板	示轴的数值没有影	影响。 但必

说明

激活的刀具半径补偿(G41/G42)在镜像功能生效时自动反向。 旋转方向 G2/G3 在镜像功能生效时自动反向。

图 10-9 示例:刀具位置镜像

编程示例

不同轴上生效的镜像会对激活的刀具半径补偿和 G2/G3 产生影响:

1	
N10 G17	; X/Y 平面, Z 轴垂直于该平面
N20 L10	; 编程的轮廓, G41 激活
N30 MIRROR X0	; x 轴上方向变换
N40 L10	; 经过镜像的轮廓
N50 MIRROR Y0	; Y 轴上方向变换
N60 L10	
N70 AMIRROR X0	; x 轴上再次镜像
N80 L10	; 经过两次镜像的轮廓
N90 MIRROR	; 取消镜像

子程序调用 - 参见章节"子程序"

10.2 位移说明

10.2.10 工件装夹 - 可设定的零点偏移: G54 ~ G59, G500, G53, G153

功能

可设定的零点偏移规定机床上工件零点的位置(工件零点的偏移以机床零点为基准)。当 工件装夹到机床上后求出偏移量,并通过操作输入到规定的数据区。程序可以通过从六个 可能的功能组进行选择以激活此值。G54 到 G59

说明

可以通过对加工轴设定一个旋转角,使工件成一角度夹装。旋转部分可与偏移 G54 到 G59 同时激活。

操作请参见章节"输入/修改零点偏移"

编程

G54	; 第1可设定的零点偏移
G55	; 第2可设定的零点偏移
G56	; 第3可设定的零点偏移
G57	; 第4可设定的零点偏移
G58	; 第5可设定的零点偏移
G59	; 第6可设定的零点偏移
G500	;取消可设定的零点偏移-模态有效
G53	;取消可设定的零点偏移-程序段方式有效,可编程的零点偏移也一同取
	消
G153	;同 G53,另外还以程序段方式取消基本框架

10.2 位移说明

图 10-11 钻削/铣削时的多个工件夹装

程序举例

I	
N10 G54	; 调用第一个可设定的零点偏移
N20 L47	; 加工工件 1, 此处为 L47
N30 G55	; 调用第二个可设定的零点偏移
N40 L47	; 加工工件 2, 此处为 L47
N50 G56	; 调用第三个可设定的零点偏移
N60 L47	; 加工工件 3,此处为 L47
N70 G57	; 调用第四个可设定的零点偏移

10.2 位移说明

 N80 L47
 ; 加工工件 4,此处为 L47

 N90 G500 G0 X...
 ; 取消可设定的零点偏移

 子程序调用 - 参见章节"子程序"

1 在广州市 - 多元早 1 1 在广

10.2.11 可编程的工作区域限制:G25, G26, WALIMON, WALIMOF

功能

通过 G25/G26 可以定义所有轴的最大运行范围。在有效的刀具长度补偿中,刀尖作为基 准点,否则刀架参考点作为基准点。坐标值以机床为参照系。

为了使用工作区域限制,必须使该功能对各个轴都激活。 在输入屏幕中依次按下"参数" >" 设定数据" > "工作区域限制"。

可以以两种方式定义工作区域:

- 在"参数">"设定数据">"工作区域限制"下的控制系统输入屏幕中输入数值。
 因此,在"JOG"运行方式下工作区域限制也生效。
- 使用 G25/G26 编程

在零件程序中允许修改单个轴的值。 这要通过在输入屏幕窗口中覆盖已经输入的值 ("参数" > " 设定数据" > "工作区域限制")。

使用 WALIMON/WALIMOF 在程序中打开/关闭工作区域限制。

编程

G25 X Y Z	; 工作区域下限
G26 X Y Z	; 工作区域上限
WALIMON	;工作区域限制开
WALIMOF	;工作区域限制关

10.2 位移说明

图 10-12 可编程工作区域限制,2维举例

说明

• 编程 G25、G26 时必须使用 MD20080: AXCONF_CHANAX_NAME_TAB 中的通道轴 名称。

SINUMERIK 802D sl 上可以使用动态转换 (TRANSMIT, TRACYL) 功能。此时可以定 义 MD20080 的各种轴名称和 MD20060 AXCONF_GEOAX_NAME_TAB 几何轴名 称。

- G25、G26 可以和地址 S 一起使用来限制主轴转速(参见章节"主轴转速限制")。
- 只有预设轴回参考点后,工作区域限制才有效。

程序举例

```
      N10 G25 X10 Y-20 Z30
      ; 工作区域下限值

      N20 G26 X100 Y110 Z300
      ; 工作区域上限值

      N30 T1 M6
      ...

      N40 G0 X90 Y100 Z180
      ; 工作区域限制 开

      ...
      ; 仅在限制范围内加工

      N90 WALIMOF
      ; 工作区域限制 关
```

10.3 轴运行

10.3 轴运行

10.3.1 快速移动直线插补 G0

功能

快速移动 G0 功能用于刀具的快速定位,但此时不得加工工件。

可以按直线同时运行所有的轴。

每个轴的最大速度(快速移动)均在机床数据中确定。如果只移动一个进给轴,则该轴以快速移动速度进行移动。如果同时运行两个或三个轴,则轨迹速度(如刀尖上的生成速度)要选择所有参与轴之中**最大的轨迹速度**。

已编程的进给率(F字)对于 G0 无意义。G0 一直有效,直到被 G 功能组中其它的指令(G1, G2, G3, ...)取代为止。

编程

G0 X Y Z	;	直角坐标系
G0 AP= RP=	;	极坐标
G0 AP= RP= Z	;	圆柱坐标(3 维)

说明

另外还可以使用角度 ANG=...进行线性编程(参见章节"轮廓段编程")。

图 10-13 从点 P1 到 P2 带快速移动的直线插补

程序举例

N10 G0 X100 Y150 Z65 ; 直角坐标 ... N50 G0 RP=16.78 AP=45 ; 极坐标

说明

存在用于定位功能的其他 G 功能组(参见章节"准停/连续路径运行: G9/G60/G64

在 G60 准停时,可以用一个其它的 G 功能组选择带有不同精度的窗口。对于准停还有一个可选择的程序段方式有效的指令: G9.

在进行定位任务时请注意对几种方式的选择!

10.3 轴运行

10.3.2 带进给率的直线插补 G1

功能

刀具在直线轨迹上从起始点运动到结束点。**轨迹速度**以已编程的**F字**为准。 可以使所有的进给轴同时运行。

G1一直有效,直到被 G 功能组中其它的指令(G0, G2, G3, ...)取代为止。

编程

G1 X Y Z F	;	直角坐标系
G1 AP= RP= F	;	极坐标
G1 AP= RP= Z F	;	圆柱坐标(3 维)

说明

另外还可以使用角度 ANG=...进行线性编程(参见章节"轮廓段编程")。

程序举例

N05 G0 G90 X40 Y48 Z2 S500 M3

N10 G1 Z-12 F100 N15 X20 Y18 Z-10 N20 G0 Z100 N25 X-20 Y80 N30 M2 ; 刀具快速移动到 P1, 3 轴同时, 主轴转速 = 500 转/分, 顺时针旋转

- ; 进刀至 Z-12, 进给率 100 mm/min
- ; 刀具以直线运行到 P2
- ; 快速退回

; 程序结束

加工工件时需要编程主轴转速 S 和方向 M3/M4(参见章节"主轴运行")。

10.3 轴运行

10.3.3 圆弧插补: G2,G3

功能

刀具以圆弧轨迹从起始点运动到终点。 其方向由 G 功能确定:

G2: 顺时针方向

G3: 逆时针方向

图 10-15 可在 3 个平面中定义圆弧旋转方向 G2/G3

可通过不同的方式描述圆弧:

图 10-16 使用 G2/G3 编程圆弧的几种方法,以 X/Y 轴和 G2 为例

G2/G3 一直生效,直到被此 G 功能组中的其它指令 (G0, G1, ...) 取代为止。 轨迹速度通过编程 F 字给定。

编程

G2/G3 X Y I J	;圆心和终点
G2/G3 CR= X Y	;圆弧半径和终点
G2/G3 AR= I J	;张角和圆心
G2/G3 AR= X Y	;张角和终点
G2/G3 AP= RP=	;极坐标,以极点为圆心的圆弧

说明

其它编程圆弧的方法: CT - 切线过渡圆弧和 CIP - 通过中间点的圆弧 (见下章)。

圆弧的输入公差

系统仅能接受公差在一定范围之内的圆弧。系统会比较起始点和终点处的圆弧半径。如果 差值在公差以内,则在内部精确地设定圆心。否则发出报警。

公差值可以通过机床数据设置(参见 802D sl"操作说明")。

说明

在一个程序段中, 整圆只能通过圆心和终点编程!

对于使用半径定义的圆弧, CR=... 的符号用于选择正确的圆弧段。使用同样的起始点, 终 点, 半径和相同的旋转方向, 会生成 2 个不同的圆弧。CR=-... 中数值前的负号说明圆弧 段大于半圆; 否则, 圆弧段小于或等于半圆:

10.3 轴运行

图 10-17 使用半径定义圆弧时,通过 CR= 前的符号选择圆弧

编程示例:通过圆心和终点定义圆弧

图 10-18 通过圆心和终点定义圆弧

```
        N5 G90 X30 Y40
        ; N10 的圆弧起点

        N10 G2 X50 Y40 I10 J-7
        ; 终点和圆心
```

说明

圆心值以圆弧起点为基准!

编程示例:通过终点和半径定义圆弧

图 10-19 通过终点和半径定义圆弧

N5 G90 X30 Y40 N10 G2 X50 Y40 CR=12.207 ; N10 的圆弧起点

; 终点和半径

说明

CR=-... 数值前的负号表示选择大于半圆的圆弧段。

10.3 轴运行

图 10-20 通过终点和张角定义圆弧

N5 G90 X30 Y40	;	N10 的圆弧起点
N10 G2 X50 Y40 AR=105	;	终点和张角

编程示例:通过圆心和张角定义圆弧

图 10-21 通过圆心和张角定义圆弧

N5 G90 X30 Y40

; N10 的圆弧起点

N10 G2 I10 J-7 AR=105

; 圆心和张角

说明

圆心值以圆弧起点为基准!

编程示例:通过极坐标定义圆弧

图 10-22 通过极坐标定义圆弧

N1 G17	;	X/Y 平面
N5 G90 G0 X30 Y40	;	N10 的圆弧起点
N10 G111 X40 Y33	;	极点 = 圆弧圆心
N20 G2 RP=12.207 AP=21	;	极坐标

10.3 轴运行

10.3.4 通过中间点进行圆弧插补: CIP

功能

如果圆弧的**三个轮廓点**已知,而圆心或半径或者张角未知,则可使用 CIP 编程圆弧。 此时,圆弧方向由中间点的位置确定(位于起始点和终点之间)。对应以下轴分配写入中 间点:

l1=... 表示 X 轴,

J1=... 表示 Y 轴,

K1=... 表示 Z 轴

CIP 一直生效,直到被此 G 功能组中的其它指令 (G0, G1, G2, ...) 取代为止。

说明

绝对/增量尺寸设置 G90/G91 对终点和中间点有效!

图 10-23 使用终点和中间点定义圆弧,以 G90 为例

编程示例

N5 G90 X30 Y40	;	N10	的圆弧起点
N10 CIP X50 Y40 I1=40 J1=45	;	终点	和中间点

10.3.5 切线过渡圆弧 CT

功能

在平面 G17 到 G19 中,可使用 CT 和终点编程该平面中与前一轨迹(圆弧或直线)相切的圆弧。

圆弧的半径和圆心可以通过前一轨迹的几何特性和编程的圆弧终点确定。

图 10-24 与前一轨迹相切的圆弧

编程示例

I		
N10 G1 X20 F300	;	直线
N20 CT X Y	;	切线过渡圆弧

10.3 轴运行

10.3.6 返回固定点 G75

功能

使用 G75 可以逼近机床上的某个固定点,比如换刀点。对于所有轴,该位置固定保存在 机床数据中。每个轴最多可以定义4个固定点。 固定点不受偏移指令影响。每根轴都以最大轴速度(快速移动)逼近。 G75 需要编写在单独的程序段中,并且为程序段方式生效。必须编程机床轴名称! 在 G75 之后的程序段中,之前编程的"插补方式"组(G0,G1,G2,...)中的G 指令重新生效。

编程

G75 FP=<n> X1=0 Y1=0 Z1=0

说明

FPn 对应轴机床数据 MD30600 \$MA_FIX_POINT_POS[n-1]。 如果未编程 FP,则第一个 固定点生效。

表格 10-3 解释

指令	说明	
G75	逼近固定点	
FP= <n></n>	需要逼近的固定点。给定固定点编号: <n></n>	
	<n> 的取值范围: 1, 2, 3, 4</n>	
	如果没有给定固定点编号,则自动逼近固定点 1。	
X1=0 Y1=0 需要运行到固定点的机床轴。		
Z1=0	将需要同步逼近固定点的轴设定为值"0"。	
	每根轴以最大轴速度运行。	

编程示例

 N05 G75 FP=1 Z1=0
 ; 在 z 轴上逼近固定点 1

 N10 G75 FP=2 X1=0 Y1=0
 ;在 x 和 y 上逼近固定点 2,例如进行换刀

 N30 M30
 ;程序结束

说明

为 X1, Y1, Z1 编程的位置值(任意值,此处为 0)没有意义,但必须写入。

10.3.7 回参考点运行 G74

功能

用 G74 可以在 NC 程序中执行回参考点运行。每根轴的运行方向和速度保存在机床数据中。

G74 需要编写在单独的程序段中,并且为程序段方式生效。 必须编程机床轴名称! 在 G74 之后的程序段中,之前编程的"插补方式"组 (G0, G1,G2, ...) 中的 G 指令重新生效。

编程示例

N10 G74 X1=0 Y1=0 Z1=0

说明

为 X1, Y1, Z1 编程的位置值(任意值,此处为 0)没有意义,但必须写入。

10.3.8 用接触式测量头测量 MEAS, MEAW

功能

该功能在 SINUMERIK 802D sl plus 和 pro 中可用。

如果在编写了轴运行指令的程序段中写入了指令 MEAS=... 或者 MEAW=...,则在连接的 测量头的脉冲沿采集和保存运行轴的位置。 在程序中可以读取每根轴的测量结果。 使用 MEAS 时,轴在到达所选的测量头脉冲沿后制动,并删除剩余行程。

编程

MEAS=1	G1 X Y Z F	;测量头上升沿时测量,	取消剩余行程
MEAS=-1	G1 X Y Z F	;测量头下降沿时测量,	取消剩余行程
MEAW=1	G1 X Y Z F	;测量头上升沿时测量,	不取消剩余行程
MEAW=-1	G1 X Y Z F	;测量头下降沿时测量,	不取消剩余行程

①小心	
使用 MEAW 时:	测量头在触发后也会运行至编程的位置。存在损坏危险!

测量任务状态

如果测量头接通,则测量程序段后的变量 \$AC_MEA[1] 值 = 1,否则值 = 0。 启动测量程序段后变量设置为值 = 0。

测量结果

测量头激活后,测量结果包含了测量程序段后的下列变量,供测量程序段中运行的轴使用:

在机床坐标系中: \$AA_MM[轴]

在工件坐标系中: \$AA_MW[轴]

编程 10.3 轴运行

编程示例

N10 MEAS=1 G1 X300 Z-40 F4000	;	测量, 删除剩余行程
	;	测量头上升沿
N20 IF \$AC_MEA[1]==0 GOTOF MEASERR	;	测量出错?
N30 R5=\$AA_MW[X] R6=\$AA_MW[Z]	;	处理测量值
N100 MEASERR:MO	;	测量出错

说明

IF 指令 - 参见章节"有条件的程序跳转"

10.3.9 进给率 F

功能

进给率 F 是轨迹速度, 它是所有相关轴的速度分量的矢量和。单个轴的速度是刀具轨迹 速度在坐标轴上的分量。

进给率 F 在 G1、G2、G3、CIP、CT 插补方式中生效,并且一直有效,直到写入新的 F 字。

编程

F...

说明

整数值可以舍去小数点后的数据,如F300

10.3 轴运行

使用 G94/G95 定义 F 的单位

F 字的单位通过 G 功能定义:

- G94:进给率 F, 单位: 毫米/分
- G95:主轴旋转进给率 F,单位:毫米/转 (仅在主轴旋转时有意义!)

说明

这些单位适用于公制尺寸。根据章节"公制和英制尺寸",也可以采用英制尺寸设置。

编程示例

N10 G94 F310	;	进给率,单位毫米/分
N110 S200 M3	;	主轴旋转
N120 G95 F15.5	;	进给率,单位毫米/转

说明

i.

在 G94/G95 之间切换时,请写入新的 F 字!

10.3.10 准停/轨迹控制运行 G9, G60, G64

功能

为了设置程序段分界处的运行性能以及进行程序段转换,一组 G 功能可用于最佳匹配不同的要求。例如:要求坐标轴快速定位,或者通过多个程序段加工轨迹轮廓。

编程

G60	;	准停 - 模态有效
G64	;	连续路径运行
G9	;	准停-程序段方式有效
G601
 ; 精准停窗口

 G602
 ; 粗准停窗口

准停 G60, G9

当准停 (G60 或 G9) 功能有效时,在到达准确的目标位置后,速度要在程序段结尾减小到零。

如果该程序段的运行结束并开始执行下一个程序段,则此时可以设定下一个模态有效的 G 功能组。

● G601:精准停窗口

所有轴都达到"精准停窗口"(机床数据值)后,开始进行程序段转换。

• G602: 粗准停窗口

所有轴都达到"粗准停窗口"(机床数据值)后,开始进行程序段转换。

在执行多个定位过程时,准停窗口的选择对加工的总时间影响很大。精确调整需要较多时间。

图 10-25 G60/G9 生效时粗准停窗口或精准停窗口,窗口放大显示

程序举例

N5 G602	;	粗准停窗口
N10 G0 G60 Z	;	准停模态有效

ı.

10.3 轴运行

```
      N20 Y... Z...
      ; G60 继续有效

      N50 G1 G601 ...
      ; 精准停窗口

      N80 G64 Z...
      ; 转换到轨迹控制运行方式

      N100 G0 G9 Z...
      ; 准停只在这个程序段中有效

      N111 ...
      ; 再次进行轨迹控制运行
```

说明

Т

指令 G9 只能使其所在的程序段产生准停; G60 一直有效, 直到被 G64 取代为止。

连续路径运行 G64

连续路径运行的目的就是在程序段交界处避免停顿,并使其尽可能以**相同的轨迹速度**(切 线过渡)转换到**下一程序段**。该功能以**预定速度控制**执行多个程序段(预读功能)。

在非切线过渡(拐角)时,必要时必须快速降低速度,使得轴在短时间内速度发生相对较大的变化。这可能会导致强冲击(加速度变化)。激活 **SOFT** 功能可以削弱冲击强度。

程序举例

N10 G64 G1 Z F	; 连续路径运行
N20 Y	; 再次进行轨迹控制运行
N180 G60	; 转换到准停

预定速度控制(预读功能):

在使用 G64 的连续路径运行中,控制系统自动事先计算出多个 NC 程序段的速度控制。 由此,在几个程序段的近似切线过渡中,可以加速或制动。若加工路径由 NC 程序段中几 个较短的位移组成,则使用预读功能可以达到更高的速度。

10.3.11 加速度性能: BRISK, SOFT

BRISK

机床坐标轴以允许的最大加速度改变其速度,直到达到最终速度。使用 BRISK 可以使加 工时间最优化。在短时间内就可达到设定速度。但是加速度特性会呈现跃变。

SOFT

机床坐标轴按非线性的连续特征曲线加速,直至达到最终速度。 SOFT 通过无急动加速,减轻了机床负担。 制动时也具有相同性能。

10.3 轴运行

编程

BRISK ; 轨迹跳跃加速 SOFT ; 轨迹平滑加速

编程示例

N10 SOFT G1 X30 Z84 F650 ; 轨迹平滑加速 ... N90 BRISK X87 Z104 ; 使用轨迹跳跃加速继续运行 ...

10.3.12 加速度倍率: ACC

ı.

功能

在某些程序段中可能需要修改机床数据中定义的进给轴或主轴加速度。 该可编程的加速 度是一个百分比形式的加速度倍率。

可以为每个轴(例如:X轴)或主轴(S)编程一个 >0% 而 ≤ 200% 的百分比值。此时 将以相应比例的加速度进行轴插补。参考值 (100%) 是用于加速的有效机床数据值(进给 轴和主轴情况有所不同,主轴上还取决于齿轮级,以及是处于定位模式还是转速模式)。

编程

 ACC[*轴名称*] = 百分比值
 ;用于进给轴

 ACC[S] = 百分比值
 ;用于主轴

编程示例

N10 ACC[X]=80	; x 轴加速度的 80%
N20 ACC[S]=50	; 主轴加速度的 50%
N100 ACC[X]=100	; 取消 x 轴的加速度倍率

有效性

此限制在 AUTO 和 MDA 运行方式下的所有插补方式中生效。而在 JOG 运行方式和回参考点运行时无效。

通过赋值 ACC[...]=100 可取消倍率; RESET 和程序结束时同样取消倍率。

编程的倍率值在空转进给时也有效。

/[\小心

只有当机床机械应力在允许范围内并且驱动具有相应的驱动能力时,才允许编程大于 100%的倍率。不遵守此规定可能会导致机械损伤和/或故障信息。

10.3.13 第4轴

功能

某些机床类型可能需要第4轴,例如:分度装置、回转修整器、顶部修整器等。该轴可以 是直线轴,也可以是回转轴。可以为该轴定义相应的名称,例如: U或者C或者A轴 等。如果该轴是回转轴,则在0...<360度(模数属性)内定义它的运行范围。

在匹配的机床结构上,第4轴可以同时与其它轴直线运行。如果在一个程序段中用G1 或 G2/G3 使轴与其它轴 (X,Y,Z) 一起运行,则其不含有进给率F的分量。其速度取决于X、Y、Z轴的轨迹时间。其"直线"运动与其它轨迹轴一起开始并结束。但是该速度不能大于定义的极限值。

如果在一个程序段中仅编程了第4轴,则该轴以有效的进给率F按G1运行。若该轴为回转轴,F的单位在G94时相应为度/分钟,G95时主轴的F单位为度/转。

同样,对于该轴也可以设置可设定的偏移 (G54 ... G59) 和可编程的偏移 (TRANS, ATRANS)。

程序举例

第4轴应为旋转轴(回转轴),轴名称为A:

N5 G94	; F,单位:毫米/分钟或度/分钟
N10 G0 X10 Y20 Z30 A45	; 快速移动 X 轴、Y 轴、Z 轴, 同时运行 A 轴
N20 G1 X12 Y21 Z33 A60 F400	; 以 400 毫米/分钟的进给率移动 x 轴、y 轴、 z 轴, 同时运行 A 轴
N30 G1 A90 F3000	; 仅单独以 3000 度/分钟的进给率运行轴 A 到 90 度位置

10.3 轴运行

回转轴的特殊指令: DC, ACP, ACN

例如: 回转轴 A:

A=DC()	;	绝对尺寸说明,	直接回位(最短距离)
A=ACP()	;	绝对尺寸说明,	从正方向运行至某位置
$A=ACN(\ldots)$;	绝对尺寸说明,	从负方向运行至某位置
例如:			

N10 A=ACP(55.7) ;从正方向运行至绝对位置 55.7 度

10.3.14 暂停时间: G4

功能

通过在两个 NC 程序段之间插入一个写入了 G4 的单独程序段,可以使加工中断特定的时间;例如用于自由切削。

F... 字或者 S... 字只用于在该程序段中定义时间。 在此之前编程的进给率 F 和主轴转速 S 仍然保持有效。

编程

G4 F	;暂停时间,	单位秒
G4 S	;暂停时间,	单位主轴转数

编程示例

N5 G1 F200 Z-50 S300 M3	; 进给率 F, 主轴转速 S
N10 G4 F2.5	; 暂停时间 2.5 秒
N20 Z70	
N30 G4 S30	; 主轴暂停 30 转, 相当于在 s = 300 转/分钟和转速倍率为 100 % 时暂停: t=0.1 分钟
N40 X	; 进给和主轴转速继续生效

说明

G4 S.. 只有在主轴受控的情况下才生效(当通过 S... 编程了主轴转速时)。

10.3.15 运行到固定挡块

功能

该功能在 802D sl plus 和 802D sl pro 上可用。

使用此功能"运行到固定挡块"(FXS=固定点停止),可以获得夹紧工件所需的作用力,如主轴和夹具所需的作用力。除此之外,该功能还可以返回机械参考点。利用足够的减速扭矩,不用连接探头就可以执行简单的测量工作。

编程

FXS[轴]=1	;	选择 "运行到固定挡块"
FXS[轴]=0	;	取消"运行到固定挡块"
FXST[轴]=	;	夹紧扭据,驱动最大扭矩的%
FXSW[轴]=	;	以毫米或度表示的固定挡块监控的窗口宽度

说明

定义轴名称时优先使用 **加工轴名称**(例如: X1)。只有当没有坐标旋转生效并且轴已直接分配给一个加工轴时,允许写入通道轴名称(例如: X)。 指令模态有效。运行行程和功能 FXS[轴] = 1 的选择必须在 **单独程序段** 中编程。

编程举例 - 选择

N10 G1 G94 ... N100 X250 Z100 F100 FXS[Z1]=1 FXST[Z1]=12.3 FXSW[Z1]=2 ;选择机床轴 Z1 的 FXS 功能, ;夹紧扭矩 12.3%, ;窗口宽度 2 mm

说明

选择该功能时,固定挡块必须在起始位置和目标位置之间。 扭矩 FXST[]= 和窗口宽度 FXSW[]= 中的数据是可选的。如果没有写入该数据,则当前 设定数据 (SD) 中的值生效。如果已写入数据,则此编程值接收到设定数据中。首先, 从机床数据中装载包含此值的设定数据。可以随时修改程序中的 FXST[]=...或者 FXSW[]=...。这些修改在程序中编入的运行动作前生效。

图 10-28 运行到固定挡块

其他编程举例

 N10 G1 G94 ...

 N20 X250 Z100 F100 FXS[X1]=1
 ; 为机床轴 X1 选择了 FXS , 夹紧扭矩和窗口宽度值 如设定数据中所定义

 N20 X250 Z100 F100 FXS[X1]=1
 ; 为机床轴 X1 选择了 FXS, 夹紧扭矩 12.3 %, 窗 口宽度如设定数据定义

 N20 X250 Z100 F100 FXS[X1]=1
 ; 为机床轴 X1 选择了 FXS, 夹紧扭矩 12.3 %, 窗 口宽度 2 mm

 N20 X250 Z100 F100 FXS[X1]=1 FXSW[X1]=2
 ; 为机床轴 X1 选择了 FXS, 夹紧扭矩如数据中设定, 窗口宽度 2 mm

到达固定挡块

在到达固定挡块之后,

- 删除剩余行程并且位置给定值被跟随,
- 驱动扭矩提高到编程的极限值 FXST[]=... 或者设定数据中的定义值并保持不变,
- 在指定的窗口宽度内激活固定挡块监控(FXSW[]=...或者设定数据中的定义值)。

取消功能

取消该功能会导致预处理程序停止。 包含 FXS[X1]=0 的程序段中必须包含运行运动。 例如:

N200 G1 G94 X200 Y400 F200 FXS[X1] = 0 ; 轴 X1 从固定挡块回到位置 X= 200 毫米。

说明

返回位置的运动必须是离开固定挡块,否则会给挡块或机床造成损坏。

在到达返回位置后,就可以进行程序段转换。如果没有指定返回位置,那么在取消扭矩 限制后就立即开始程序段转换。

说明

"测量和删除剩余行程"(指令"MEAS")和"运行到固定挡块"不能同时在一个程序段内编程。

在"运行到固定挡块"有效时,不能执行轮廓监控。

如果扭矩限值下降得过多,轴将不能跟随指定的设定值;位置调节器到达限值,并且轮廓 偏差增加。在这种运行状态下可以通过提高扭矩限值来达到突变运动。为了确保轴仍然 按照定义值运行,必须将轮廓偏差控制在无限制扭矩时的偏差之内。

通过机床参数可以给新的扭矩限制定义一个上升坡度,从而可以稳定地设置扭矩极限 (如,挤压套筒时) 10.3 轴运行

状态系统变量: \$AA_FXS[*轴*]

此系统变量可显示指定坐标轴的"运行到固定挡块"停止的状态:

- 值=
 - 0: 轴未到挡块
 - 1:已成功到达停止点

(轴在固定点停止监控窗口中)

- 2: 未成功到达固定挡块(轴未到达挡块)
- 3: 运行到固定挡块功能已激活
- 4: 停止已识别
- 5: 将取消运行到固定挡块功能。但还没有完成。

访问零件程序中的系统变量会触发预处理停止。

对于 SINUMERIK 802D sl, 只要求在选择/取消功能前系统处于静止状态。

报警抑制

通过机床数据可以抑制以下报警的输出:

- 20091 "未到达固定挡块"
- 20094 "固定挡块损坏"

文献: "功能描述",章节"运行到固定挡块"

10.4 主轴运动

10.4.1 主轴转速 S,旋转方向

功能

如果机床具备受控主轴,可以在地址 S 下编程主轴的转速,单位为转/分。 通过 M 指令可以设置主轴的旋转方向以及运行开始或结束(参见章节"辅助功能 M")。 M3: 主轴顺时针旋转 M4: 主轴逆时针旋转 M5: 主轴停止

说明

S值为整数时可以省略小数点后的位数,例如: S270。

说明

如果将 M3 或者 M4 写入**编程了轴运行指令的程序段**中,则 M 指令在轴运行指令**之前**生效。

缺省设置: 只有当主轴开始旋转(M3, M4)后,坐标轴才开始运行。同样 M5 也在轴运 行指令之前输出。但是不等待主轴停转,在主轴停转前坐标轴已开始运行。

程序结束或者 RESET 后主轴停止。

在程序开始时,主轴转速为零 (S0)。

说明

通过机床数据也可进行其它设置。

编程示例

N10 G1 X70 Z20 F300 S270 M3 ; 在 x 轴、z 轴运行前, 主轴以 270 转/分钟的速度顺时针旋转
N80 S450 ... ; 改变转速
N170 G0 Z180 M5 ; z 轴运行, 主轴停止

10.4 主轴运动

10.4.2 主轴转速限制: G25,G26

功能

通过在程序中写入 G25 或 G26 以及主轴地址 S 下的转速极限,可以限制受控主轴的其他 有效的极限值。同时设定数据中输入的值会被覆盖。

G25 或者 G26 需要编写在单独的程序段中。 原先写入的转速 S 保持有效。

编程

G25 S	;主轴转速下限
G26 S	;主轴转速上限

说明

通过机床数据设定主轴转速的上限。通过操作面板进行输入可以激活进行其它限制的设 定数据。

编程示例

N10 G25 S12	; 主轴转速下限:	12 转/分钟
N20 G26 S700	; 主轴转速上限:	700 转/分钟

说明

i

G25/G26 和轴地址一起用于工作区域限制(参见章节"工作区域限制")。

10.4.3 主轴定位: SPOS

功能

前提条件: 主轴必须可以进行位置闭环控制。

使用功能 SPOS= 可以将主轴定位在特定的 角度位置。 主轴通过闭环位置控制停留在此 位置。

定位过程中的速度在机床数据中定义。

如果在主轴处于 M3/M4 运行状态时写入 SPOS=*值*,则保持相应的**旋转方向**直至定位结束。如果是从静止状态开始定位,则以最短路径逼近该位置。定位方向取决于起始点和终点的位置。

例外情况: 主轴首次运行,即测量系统还没有与之同步时。在这种情况下必须在机床数据中设定定位方向。

可为回转轴设置 SPOS=ACP(...), SPOS=ACN(...) 等其它主轴运行指令(参见章节"第 4 轴")。

主轴运行和同一程序段中编写的轴运行同时进行。 当两种运行都完成时,此程序段执行 完毕。

编程

SPOS=	;绝对位置:0 <360度
SPOS=ACP()	;绝对尺寸设定,以正方向运行至设定位置
SPOS=ACN()	;绝对尺寸设定,以负方向运行至设定位置
SPOS=IC()	; 增量尺寸设定, 通过符号定义运行方向
SPOS=DC()	;绝对尺寸设定,直接逼近设定位置(最短路径)

编程示例

N10 SPOS=14.3	;	主轴位置 14.3 度
N80 G0 X89 Z300 SPOS=25.6	;	主轴定位和坐标轴运行同时进行
	;	当所有运行都完成时,此程序段执行完毕。
N81 X200 Z300	;	当达到 N80 中设定的主轴位置后,才开始执行 N81 程序段。

i.

10.4 主轴运动

10.4.4 齿轮级

功能

最多可以为一个主轴配置 5 个齿轮级来调节转速/扭矩。 通过程序中的 M 指令来选择齿轮级(参见章节"附加信息 M"):

- M40: 自动齿轮级选择
- M41 到 M45: 齿轮级 1 到 5

10.4.5 第 2 主轴

功能

在 SINUMERIK 802D sl plus 和 802D sl pro 上可以使用第 2 主轴。

在这些控制系统上,可以使用动态转换功能进行磨削加工。这些功能需要第2主轴用于 从动的工件。 使用这些功能时,主主轴被当成回转轴使用。

主主轴

主主轴的功能只适用于该主轴:

- G95 ; 旋转进给率
- G96,G97 ; 恒定切削速度
- LIMS ; G96, G97 编程的速度上限
- M3, M4, M5, S... ; 简单定义旋转方向, 停止和转速

主主轴是通过机床数据来定义的。 主主轴通常为主轴 1。 也可以在程序中定义其它主轴 为主主轴:

• SETMS (n) ; 当前的主主轴为主轴 n (= 1 或 2)

可以使用以下方法进行转换:

• SETMS ; 设定的主主轴是当前的主主轴

10.4 主轴运动

• SETMS(1) ; 主轴 1 是当前的主主轴。

只能在程序末尾或程序终止时改变主主轴的定义。 然后,定义的主主轴重新有效。

以主主轴号编程

可以根据主轴号选择一些主轴功能:

S1=, S2=	; 主轴 1 或 2 的转速
M1=3, M1=4, M1=5	; 定义主轴 1 的旋转方向和停止
M2=3, M2=4, M2=5	; 定义主轴 2 的旋转方向和停止
M1=40,, M1=45	; 主轴 1 的齿轮级(如果有的话)
M2=40,, M2=45	; 主轴 2 的齿轮级(如果有的话)
SPOS[n]	; 主轴 n 定位
SPI (n)	: 转换主轴号 n 为轴名称, 例如: "SPI"或者"CC" : n 必须是有效的主轴号(1 或者 2) ; 主轴名称 SPI(n) 和 Sn 功能相同
\$P_S[n]	; 最后编程的主轴 n 的速度
\$AA_S[n]	; 主轴 n 的实际速度
\$P_S[n]	; 最后编程的主轴 n 的旋转方向
\$AC_SDIR[n]	; 主轴 n 当前的旋转方向

已安装2个主轴

可以在程序中查询以下内容:

\$P_NUM_SPINDLES	; 定义的主轴数量(通道内)
\$P_MSNUM	; 编程的主主轴号
\$AC_MSNUM	; 有效的主主轴号

10.5 特殊功能

10.5.1 恒定切削速度: G96,G97

前提条件

主轴为受控主轴。

功能

G96 功能生效后,主轴转速随着当前加工的工件直径(端面轴)变化而变化,从而使刀具切 削点处编程的切削速度 S 始终保持恒定 主轴转速 x 直径 = 常数。

从 G96 程序段开始,地址 S 下的转速值作为切削速度处理。 G96 为模态有效,直到被 G 功能组中一个其它 G 指令(G94、 G95、 G97)替代为止。

编程

G96 S LIMS= F G97	; 恒定切削速度生效 ; 取消恒定切削
S	;切削速度,单位米/分
LIMS=	; 主轴转速上限, 在 G96、G97 中生效
F	;旋转进给率,单位毫米/转,与 G95 中一样

注释:

如果在此之前 G94 生效而不是 G95 生效,则必须重新写入合适的 F 值!

快速移动

快速移动 G0 时,转速不变化。

特例:如果以快速移动返回轮廓并且下一个程序段包含插补方式 G1 或 G2, G3, CIP, CT...(轮廓程序段),那么包含 G0 的返回程序段中已产生轮廓程序段的转速。

转速上限 LIMS =

当从大直径到小直径加工工件时,主轴转速可能会大幅度提高。因此在此建议设定主轴转速上限 LIMS=... LIMS 只在 G96 和 G97 时生效。 写入的 LIMS=... 极限值将覆写设定数据 (SD 43230: SPIND_MAX_VELO_LIMS) 中的值。如果没有写入 LIMS,则设定数据值生效。 写入 LIMS= 的极限值不能超过 G26 中编程的或者通过机床数据确定的转速上限。

取消恒定切削速度: G97

i.

可以用指令 G97 取消功能"恒定切削速度"。 G97 生效后,写入的 S 字 作为主轴转速 重新生效,单位转/分钟。 如果没有重新写入 S 字,则主轴以原先 G96 功能生效时的转速旋转。

编程举例

N10 M3	; 主轴旋转方向
N20 G96 S120 LIMS=2500	; 恒定切削速度生效, 120 米/分钟, 转速上限 2500 转/分钟
N30 G0 X150	;没有转速变化,因为 N31 包含 G0 功能
N31 X50 Z	;没有转速变化,因为 N32 包含 G0 功能
N32 X40	; 返回轮廓, 按照程序段 N40 要求, 自动调节新的转速
N40 G1 F0.2 X32 Z	;进给率 0.2 毫米/ 转
N180 G97 X Z	; 取消恒定切削速度
N190 S	; 新的主轴转速, 单位是转/分钟

说明

也可以使用 G94 或 G95 (同一 G 功能组)来取消 G96 功能。在这种情况下,如果没有 写入新的 S 字,则主轴以最后编程 的转速 S 进行后续加工。

在端面轴 X 上不可使用可编程的零点偏移 TRANS 或者 ATRANS (参见相应章节) 或者 仅写入较小的值。工件零点应位于旋转中心处。只有这样才可以精确执行功能 G96。

10.5.2 倒圆、倒角

i.

功能

在轮廓角中可以加入倒角(CHF 或 CHR)或倒圆(RND)。如果需要对多个轮廓角依次进行相同类型的倒圆,则可以使用"模态倒圆"(RNDM)。 倒圆/倒角的进给率可以用 FRC(程序段方式有效)或者 FRCM(模态有效)编程。如果没有编程 FRC/FRCM,那么一般进给率 F 生效。

编程

CHF=	;插入倒角,值: 倒角底长
CHR=	; 插入倒角, 值: 倒角腰长
RND=	; 插入倒圆, 值: 倒圆半径
RNDM=	; 模态倒圆: ; 值 >0: 倒圆半径,模态倒圆生效 : 自所有后面的轮廓角中插入倒圆。 : 值 = 0: 取消模态倒圆
FRC=	; 倒角/倒圆程序段方式有效的进给率 值 >0, 进给率单位毫米/分钟(G94)或毫米/转(G95)
FRCM=	 : 倒角/倒圆模态有效的进给率 ; 值 >0: 进给率单位毫米/分钟(G94)或毫米/转(G95), : 倒角/倒圆的模态进给率生效 值 = 0: 取消倒角/倒圆的模态进给率 ; 进给率 F 适用于倒角/倒圆。

说明

在包含轴运行到轮廓角指令的程序段中写入指令 CHF= ... 或者 CHR=... 或者 RND=... 或者 RNDM=... 。

如果其中一个程序段的轮廓长度不够,则在倒角或者倒圆时自动削减编程值。 不插入倒角/倒圆,如果

- 三个以上的连续程序段不包含平面移动的指令,
- 转换平面

如果以 G0 进行倒角,则 F、FRC、FRCM 无效。

如果倒角/倒圆时进给率 F 生效,则在正常情况下进给率为离开轮廓角程序段中的值。 其他设定在机床数据中进行。

倒角 CHF 或者 CHR

在任意组合的直线和圆弧轮廓间插入一直线轮廓段。 此直线倒去棱角。

图 10-29 举例: "两段直线"之间的倒角 CHF

图 10-30 举例: "两段直线"之间的倒角 CHR

倒角编程举例:

N5 F... N10 Gl X... CHF=5 ; 插入倒角, 倒角底长 5 毫米 N20 X... Z... ... N100 Gl X... CHR=2 ; 插入倒角, 倒角腰长 2 毫米

10.5 特殊功能

```
N110 X... Z...
...
N200 G1 FRC=200 X... CHR=4 ; 插入倒角, 进给率 FRC
N210 X... Z...
```

倒圆 RND 或者 RNDM

在任意组合的**直线和圆弧轮廓**间插入一圆弧,圆弧和轮廓相切。

图 10-31 举例:插入倒圆

倒圆编程举例

N5 F... N10 G1 X... RND=4 : 插入 1 个倒圆,半径 4 毫米,进给率 F N20 X... Z... ... N50 G1 X... FRCM= ... RNDM=2.5 ; 模态倒圆,半径 2.5 毫米, : 特殊进给率 FRCM (模态有效) N60 G3 X... Z... ; 继续插入倒圆 - 直至 N70 N70 G1 X... Z... RNDM=0 ; 取消模态倒圆 ...

10.5.3 轮廓编程

功能

如果从加工图纸上不能直接读出轮廓的终点数据,则也可以使用角度值 ANG= ... 确定直 线。 在轮廓角中可以加入倒角或倒圆。 在运行到轮廓角的程序段中写入指令 CHR= ... 或 者 RND=...。

在包含 G0 或者 G1 的(直线轮廓)程序段中可以使用轮廓段编程。

从理论上来说,可以任意连接众多直线程序段,其中插入一个倒角或倒圆。每条直线都可以通过点和/或角度加以确定。

编程

ANG=	;	确定直线的	的角度	E值
RND=	;	插入倒圆,	值:	倒圆半径
CHR=	;	插入倒角,	值:	倒角腰长

说明

功能"轮廓段编程"在 G17 到 G19 中当前有效的平面中执行。 在轮廓段编程中不允许切换 平面。

在一个程序段中同时编程半径和倒角时,将只插入半径。

角度 ANG

如果在一条直线上只有平面的终点坐标已知或者包含多个程序段的轮廓上,只有最后的终 点已知,则可以通过角度值明确定义直线轨迹。 该角度始终以 G17 到 G19 中生效平面 的横坐标为参考,例如: G17 时,以 X 轴为参考。 正角度值表示逆时针角方向的角度。

图 10-32 例如: G17 平面中定义直线的角度

10.5 特殊功能

图 10-33 例如: G17 平面中的多程序段轮廓

10.6 刀具和刀具补偿

10.6 刀具和刀具补偿

10.6.1 一般说明

功能

在创建工件加工程序时无需考虑刀具长度或者刀尖半径.可以直接编程工件尺寸,例如:根据图纸直接编程。

在专门的数据区单独输入刀具参数。

然后只需在程序中调用所需的刀具以其补偿数据。 控制系统利用这些数据执行所要求的 轨迹补偿,从而加工出说明的工件。 同时系统会通过刀具的基本尺寸补偿砂轮的回转 角,从而使砂轮的几何角始终在 0 度内。 这也适用于倾斜砂轮。 需在砂轮数据图中输入 砂轮最大直径和最大宽度。

10.6.2 刀具 T

功能

通过编程 T 字可以进行换刀。此时无论是有关**换刀**或者只是有关**预选**,都在机床数据中 定义。在磨削时可以使用 T 字直接换刀(刀具调用)。

注意:

如果已激活了某一特定刀具,则不管是程序结束还是控制系统关闭/接通时,该刀具始终 作为有效刀具被存储。

如果手动换刀,也必须在控制系统中输入,以便控制系统正确地识别刀具。比如可以在 MDA 运行方式下启动一个带有新 T 字的程序段。

编程

T..., ; 刀具号: 1... 32 000

编程 10.6 刀具和刀具补偿

说明

在以下控制系统中可以同时最多保存:

- SINUMERIK 802D sl plus: 7 把刀具,每把刀具 9 个刀沿
- SINUMERIK 802D sl pro: 14 把刀具,每把刀具 9 个刀沿。

编程举例

N10 T1 D1	; 刀具 1 刀沿 1
N70 T588	; 刀具 588

10.6.3 刀具补偿号 D

i.

功能

可以向某个特定刀具分配带不同刀具补偿程序段(用于多个刀沿)的1到9个数组。如果需要特殊刀沿,可以编程D和相应的编号。 如果没有写入D字,则D1自动生效。 如果写入D0,则刀具补偿无效.

在新建刀具时系统将自动生成刀具补偿号(所有 9 个刀沿)。刀具的刀沿具有固定的含义(砂轮的几何位置)。刀沿 1、3、5 表示左边砂轮,刀沿 2、4、6 表示用于标准轮廓的右砂轮。

这种规则同样适用于补偿修整量时的所有轮廓(包含自由轮廓),也就是说,奇数表示左 边(负磨损值),偶数表示右边(正磨损值)。所有点在X轴方向的磨损(直径)都一 样(在负方向磨削时为负值)。刀沿7到9为一个砂轮的三个修整器。它们固定分配在 砂轮的各个区域。

修整器 1 (D7) 左砂轮边缘

修整器 2 (D8) 右砂轮边缘

修整器 3 (D9) 用于直径以及不能使用修整器 1 或者 2 时的可选项。

选项: 如果修整器是只进行浸入式修整的金刚石滚轮修整器,则始终使用修整器1。而 不使用其他修整器。

10.6 刀具和刀具补偿

编程

D...; 刀补号: 1...9, D0: 没有补偿值生效!

说明

在刀具管理中通过输入来确定 T/D 数组刀具补偿的固定含义。 在此章中列出了参数表。 一旦刀具有效,刀具长度补偿立即生效;如果没有编写任何 D 号,则 D1 自动生效。 最先编程的相关长度补偿轴运行时,补偿开始。 而刀具半径补偿必须另外通过 G41/G42 开启。

编程举例

表格 10-4 换刀:

N10 T1	; 激活刀具 1 和相应的 D1
N11 G0 X Z	;覆盖长度补偿差值
N50 T4 D2	; 换入刀具 4, T4 的 D2 生效
N70 G0 Z D1	; 刀具 4 的 D1 生效, 只更换刀沿

补偿存储器的内容

- 几何尺寸:长度、半径 它们由几个部分组成(几何尺寸,磨损尺寸)。控制系统从这些部分计算出最后的尺 寸(比如总长度1,总半径)。各个总尺寸在激活补偿存储器时生效。 如何计算出坐标轴中的值,由刀具类型和当前平面G17,G18,G19(参见下图)来 决定。
- 刀具类型
 刀具类型确定需要哪些几何数据以及如何计算这些数据(砂轮类型)。
- 刀沿位置
 对于修整器,还需另外说明刀沿位置。

下图给出了各个刀具类型所需的刀具参数的信息。

10.6 刀具和刀具补偿

10.6 刀具和刀具补偿

10.6.4 选择刀具半径补偿: G41,G42

功能

必须存在具有相应 D 号的生效刀具。通过 G41/G42 使刀具半径补偿(刀沿半径补偿) 生效。然后,控制系统自动计算出当前刀具半径所需、与编程轮廓等距的刀具轨迹。 G18 必须处于有效状态。

图 10-35 刀具半径补偿(刀沿半径补偿)

编程

G41 Y... Z... ; 刀具半径补偿,轮廓左边 G42 Y... Z... ; 刀具半径补偿,轮廓右边

注释: 只有在直线插补(G0,G1)情况下才可以选择半径补偿。

编程两个坐标轴。如果你只给出一个坐标轴的尺寸,则第二个坐标轴自动地以此前最后 编程的尺寸赋值。

<u>编程</u> 10.6 刀具和刀具补偿

图 10-36 工件轮廓左边 - 右边补偿

开始进行补偿

刀具以直线返回轮廓,然后在轮廓起始点与轨迹切线垂直。 请选择合适的起点,确保刀具运行过程中不发生碰撞!

图 10-37 举例: 以 G42 进行刀具半径补偿, 刀沿位置 = 3

说明

通常在 G41/G42 程序段后接着执行加工工件轮廓的第一个程序段。 然而,两程序段间、 不含任何位移数据的某个程序段会中断轮廓描述,例如:程序段中只有 M 指令。

10.6 刀具和刀具补偿

程序举例

 N10 T... F...

 N15 Y... Z...
 : P0 - 起点

 N20 G1 G42 Y... Z...
 : 工件轮廓右边补偿, P1

 N30 Y... Z...;
 : 起始轮廓,圆弧或直线

10.6.5 拐角特性: G450,G451

功能

在 G41/G42 有效的情况下,一段轮廓到另一段轮廓以不连续的拐角过渡时可以通过 G450 和 G451 功能调节其特性(拐角特性)。 由控制系统自动识别内角和外角。如为内角,则必须要回到等距轨迹的交点。

编程

G450	; 过渡圆弧
G451	; 交点

图 10-38 外角拐角特性

图 10-39 内角拐角特性

过渡圆弧 G450

刀具中心点以圆弧形状绕行工件外拐角,刀具半径为离开距离。在数据计算中,圆弧过 渡属于下一个带有运行指令的程序段;比如有关进给值。

10.6 刀具和刀具补偿

交点 G451

在刀具中心轨迹(圆弧或直线)形成等距交点 G451 时返回该点(交点)。

10.6.6 取消刀具半径补偿: G40

功能

用 G40 取消补偿运行(G41/G42)。G40 也是编程开始时所处的状态。 刀具在 G40 之前的程序段以正常方式结束(结束时补偿矢量垂直于轨迹终点处切线); 与起始角无关。 G40 生效时,参考点即为刀尖。这样在取消补偿时,刀尖返回编程点。 在选择 G40 程序段编程终点时要始终确保运行中不会发生碰撞!

编程

G40 Y... Z... ; 取消刀具半径补偿

注释: 只有在直线插补(G0,G1)情况下才可以取消补偿运行。

编程两个坐标轴。如果你只给出一个坐标轴的尺寸,则第二个坐标轴自动地以此前最后 编程的尺寸赋值。

图 10-40 举例: G42, 刀沿位置 =3 时用 G40 取消刀具半径补偿

编程 10.6 刀具和刀具补偿

程序举例

N100 Y... Z...
 x轮廓,圆弧或直线上的最后程序段,P1
 N110 G40 G1 Y... Z...
 ;关闭刀具半径补偿,P2

10.6.7 刀具半径补偿的特殊情况

补偿方向的转换

补偿方向 G41 ⇄ G42 可以互相转换,无需在其中写入 G40 指令。 原补偿方向的最后程序段在其轨迹终点处按补偿矢量的正常状态结束。 然后按新的补偿 方向开始进行补偿(在起点处以正常状态)。

重复 G41, G41 或者 G42, G42

重复执行相同的补偿方式时可以直接进行新的编程而无需在其中写入 G40 指令。 新补偿调用之前的最后程序段在其轨迹终点处以补偿矢量的正常状态结束。 然后开始进 行新的补偿(特性与补偿方向的转换一样)。

补偿号 D 的更换

补偿号 D 可以在补偿运行时更换。 刀具半径改变后,自新 D 号所在的程序段开始处生效。 但整个变化需等到程序段结束才能完成。 这些修改值由整个程序段连续执行;在圆 弧插补时也一样。

通过 M2 结束补偿

如果通过 M2(程序结束),而不是用 G40 指令结束补偿运行,则最后的程序段以补偿矢量正常位置的坐标结束。这时不会出现补偿动作。程序在此刀具位置结束。

临界加工情况

在编程时特别要注意下列情况:内角过渡时轮廓位移小于刀具半径;在两个相连内角处轮 廓位移小于刀具直径。

避免出现这种情况!

检查多个程序段, 使轮廓中不要含有"瓶颈"。

10.6 刀具和刀具补偿

如果进行测试/试运行,请选用可供选择的最大刀具半径。

轮廓尖角

如果在 G451 交点有效时出现尖角,则会自动转换到过渡圆弧。 这可以避免较长的空行程。

10.6.8 刀具半径补偿举例

砂轮应具有下图中展示的轮廓。 使用 MIRROR 和 G41 由左向右进行修整

注意: 请注意砂轮数据中的工件零点(XWP)必须为 110,这样才能在工件坐标系中编程轮廓。

图 10-41 轮廓修整举例

Nl	;	轮廓剖面
N10 F S M	;	半径尺寸,工艺数值
N15 G500	;	取消零点偏移
N20 MIRROR X0 Z0	;	开始轮廓运行
N30 G90 G0 X-90		
N40 Z-10		
N50 Y110	;	返回 R55

10.6 刀具和刀具补偿

N60 G41 G64 G1 Z20 F500	;	修整轮廓段 ①
N70 Y100		
N80 Z60 RND=20	;	修整轮廓段 ②
N90 Y60		
N100 Z68	;	修整轮廓段 ③
N110 Y40 Z98	;	修整轮廓段 ④
N120 Z118	;	修整轮廓段 ⑤
N130 Y30 Z123	;	修整轮廓段 ⑥
N140 Z123	;	修整轮廓段 ⑦
N150 G0 Y-90	;	退回
N160 MIRROR	;	结束轮廓运行
M17		

10.7 辅助功能 M

10.7 辅助功能 M

功能

利用辅助功能 M 可以设定诸如开关操作、"打开/关闭冷却液"等功能。

一小部分的 M 功能已经由控制系统制造商预置,作为固定功能占用。其它功能供机床生产厂商使用。

说明

在章节"指令表"中可以查阅控制系统中所使用和保留的 M 辅助功能一览表。

编程

M...; 在一个程序段中最多可以有 5 个 M 功能

生效

在坐标轴运行程序段中的作用:

如果 M0, M1, M2 功能位于一个有坐标轴运行指令的程序段中,则这些 M 功能只有在坐 标轴运行之后才会有效。

而 M3, M4, M5 功能则在坐标轴运行之前信号就输出到内部的匹配控制系统(PLC) 上。 只有当受控主轴按 M3 或 M4 启动之后,坐标轴才开始运行。 在执行 M5 指令时并 不等待主轴停止。 坐标轴在主轴静止之前已经开始运动(标准设置)。

其它的 M 功能信号与坐标轴运行信号一起输出到 PLC 上。

如果您想在坐标轴运行之前或之后对一个 M 功能进行编程,则你须插入一个独立的 M 功能程序段。注意: 此程序段会中断 G64 连续路径运行并造成准停!

程序举例

1

N10 S	
N20 X M3	; 程序段中 M 功能, 有轴运动, 在 x 轴运行之前主轴快速运行
N180 M78 M67 M10 M12 M37	;程序段中最多有 5 个 м 功能
编程 10.7 辅助功能 M

说明

除了 M 功能和 H 功能之外, T、D 和 S 功能也可以传送到 PLC(存储编程控制系统) 上。每个程序段中最多可以写入 10 个这样的功能指令。

说明

在 SINUMERIK 802D sl plus 和 802D sl pro 上可以使用两根主轴。从而可以提供更多的 M 指令编程方法 - 仅适用于主轴:

M1=3, M1=4, M1=5, M1=40, ... ; M3, M4, M5, M40, ... 用于主轴 1 M2=3, M2=4, M2=5, M2=40, ... ; M3, M4, M5, M40, ... 用于主轴 2 10.8 H 功能

10.8 H 功能

功能

使用 H 功能可从程序中向 PLC 传输浮点型数据(数据类型 REAL - 如使用计算参数时, 参见章节"计算参数 R")。

某些H功能值的意义由机床制造商确定。

编程

H0=... 到 H9999=... ; 每个程序段最多 3 个 H 功能

程序举例

N10	H1=1.987	H2=978.123	НЗ=4 ;	程序段中有	3	个	Η	功能
N20	G0 X71.3	H99=-8978.2	.34 ;	程序段中有	轴	运行	指	ş
N30	Н5		;	相当于:	н0	=5.	0	

说明

除了 M 功能和 H 功能之外, T、D 和 S 功能也可以传送到 PLC(存储编程控制系统) 上。每个程序段中最多可以写入 10 个这样的功能指令。

10.9 计算参数 R, LUD 和 PLC 变量

10.9 计算参数 R, LUD 和 PLC 变量

10.9.1 计算参数 R

功能

如果一个 NC 程序不仅仅适用于一次性特定数值,或者必须要计算出数值,则可以使用计 算参数。在程序运行时,可以通过控制系统计算或者设置所需要的数值。

另一个方法就是通过操作设定计算参数值。 如果计算参数赋值,它们可以在程序中赋值 其它数值可设定的 NC 地址。

编程

R0= 到	; 赋值计算参数
R299=	
R[R0]=	;间接编程 赋值计算参数 R,例如将其编号赋在 R0 中
X=R0	;为 NC 地址赋值计算参数,例如:X 轴

赋值

计算参数有以下的赋值范围:

±(0.000 0001 ... 9999 9999)

(8 位小数,带符号和小数点)。

在整数值中小数点可以取消 正号可以不用写

示例:

R0=3.5678 R1=-37.3 R2=2 R3=-7 R4=-45678.123

使用指数表示法 可以赋值更大的数值范围:

± (10⁻³⁰⁰ ... 10⁺³⁰⁰)

指数数值写在 EX 符号之后;最大的字符数: 10 (包括符号和小数点)

EX的值范围: -300至+300

示例:

10.9 计算参数 R, LUD 和 PLC 变量

R0=-0.1EX-5; 意义: R0 = -0,000 001R1=1.874EX8; 意义: R1 = 187 400 000

说明

一个程序段中可以有几个赋值指令;也可以赋值计算表达式。

给其它地址赋值

一个 NC 程序的灵活性主要体现在:可以把这些计算参数或者计算表达式用计算参数赋值 给其它的 NC 地址。可以用数值、算术表达式或 R 参数对任意 NC 地址赋值; 例外: 地 址 N、G 和 L。

在赋值时,在地址符之后写符号"="。也可以带一个负号赋值。

如果给一个轴地址赋值(运行指令),则需要一个独立的程序段。

示例:

N10 G0 X=R2 ; 赋值 X 轴

计算操作/计算功能

在使用运算符/计算功能时,必须要遵守通常的数学运算规则。优先执行的过程通过园括 号设置。其它情况下,按照先乘除后加减运算。

在三角函数中单位使用度。

容许的计算功能: 参见章节"指令表"

编程举例: 使用 R 参数计算

 N10 R1= R1+1
 ; 新的 R1 等于旧的 R1 加 1

 N20 R1=R2+R3 R4=R5-R6 R7=R8*R9 R10=R11/R12

 N30 R13=SIN(25.3)
 ; R13 等同于正弦 25.3 度

 N40 R14=R1*R2+R3
 ; 先乘除后加减 R14=(R1*R2)+R3

 N50 R14=R3+R2*R1
 ; 结果,与程序段 N40 相同

 N60 R15=SQRT(R1*R1+R2*R2)
 ; 意义:

 N70 R1= -R1
 ; 新的 R1 为原先 R1 的负值

10.9 计算参数 R, LUD 和 PLC 变量

编程举例: 用 R 参数为坐标轴赋值

```
N10 G1 G91 X=R1 Z=R2 F300 ; 单独程序段(运行程序段)
N20 Z=R3
N30 X=-R4
N40 Z= SIN(25.3)-R5 ; 带算术运算
...
```

编程举例: 间接编程

N10 R1=5	;	直接赋值	5	(整数)) :	给	R1
N100 R[R1]=27.123	;	间接赋值	27	.123	给	R!	5

10.9.2 局部用户数据(LUD)

功能

用户/编程人员(使用者)可以在程序中定义自己的不同数据类型的变量 (LUD= Local User Data 局部用户数据)。这些变量只在定义它们的程序中出现。可以在程序的开头直接定义这些变量并为它们赋值。否则初始值为零。

变量名可由编程器自行确定。 命名时应遵守以下规则:

- 最大长度为 32 个字符
- 起始的两个字符必须是字母;其它的字符可以是字母,下划线或数字。
- 系统中已经使用的名字不能再使用(NC 地址,关键字,程序名,子程序名等)。

编程/数据类型

DEF BOOL 变量名 1	; 布尔类型,值: TRUE 真 (=1), FALSE 假 (=0)
DEF CHAR 变量名 2	;字符型,,ASCII 代码中的 1 个字符: "a","b",
	;代码值:0255
DEF INT 变量名 3	;整型,32位范围内的整数值:
	; -2 147 483 648 至 +2 147 483 647 (十进制)

```
编程
```

10.9 计算参数 R,LUD 和 PLC 变量

DEF REAL 变量名 4	; 实型,自然数(比如计算参数 R), ; 值范围: ±(0.000 0001 9999 9999) ; (8 位数字,加符号和小数点)或 ; 指数书写方式: ±(10 的 -300 次方到 10 的 +300 次方)
DEF STRING[字符串长度] 变量名 41	;字符串型,[字符串长度]: 最大字符数
每种数据类型要求单独的程序行。 示例:	可以在同一行中定义类型相同的多个变量。
DEF INT PVAR1, PVAR2, PVAR3=12, 新 赋值字符串类型举例	PVAR4 ; 整型的变量 4
DEF STRING[12] PVAR="Hallo"	; 定义变量 PVAR 的最大字符长度为 12 个字符,并 赋值字符串"Hallo"
除了单个变量,还可以定义这些数	据类型变量的一维或者二维域:
DEF INT PVAR5[n] DEF INT PVAR6[n,m] 示例:	: 整型的一维域, n: 整数 : 整型的二维域, n, m: 整数
DEF INT PVAR7[3] 在程序中可以通过域索引读取各个 到较小的元素数量。 示例:	: 域中包含 3 个整型元素 域元素、并将其作为单独的变量来处理。 索引顺序从 0
N10 PVAR7[2]=24 包含 SET 指令的域赋值:	; 第三个域元素(使用索引 2)的值为 24。
N20 PVAR5[2]=SET(1,2,3)	;从第 3 个域元素起,分配不同的值。

域

10.9 计算参数 R, LUD 和 PLC 变量

包含 REP 指令的域赋值:

N20 PVAR7[4]=REP(2) ;从域元素 [4] 起,所有的元素具有相同的值,此处为 2。

PLC 变量的读和写 10.9.3

功能

为了在 NC 和 PLC 之间进行快速的数据交换,在 PLC 用户接口提供了一个长度为 512 字节的特殊数据区。在此区域中,PLC 数据具有相同的数据类型和位置偏移量。在 NC 程序中可以读写这些一致的变量。

为此,需提供专门的系统变量:

\$A_DBB[n]	;	数据字节(8位值)
\$A_DBW[n]	;	数据字(16 位值)
\$A_DBD[n]	;	数据双字(32 位值)
\$A_DBR[n]	;	实型数据(32 位值)

n 表示位置偏移量(从数据区的起始处到变量的起始处),单位字节

编程示例

R1=\$A_DBR[5] ; 读取 REAL 值; 偏移量 5 (从区域的字节 5 处开始)

说明

读取变量会造成预处理程序停止(内部 STOPRE)。

10.9 计算参数 R, LUD 和 PLC 变量

注意 PLC 变量的写入一般限制在三个变量(元素)范围内。 对于相继迅速写入的 PLC 变量,每次写入过程需要一个元素。 如果需要执行多次写入而提供元素,则必须确保程序段传送(必要时触发预处理停 止)。 例如: \$A_DBB[1]=1 \$A_DBB[2]=2 \$A_DBB[3]=3 STOPRE \$A_DBB[4]=4

10.10 程序跳转

10.10.1 程序跳转的跳转目标

功能

标记符 或 **程序段号** 用于标记程序中所跳转的目标程序段。 用跳转功能可以实现程序运行 分支。

标记符可以自由选取,但必须由 2-8 个字母或数字组成,其中 开始两个符号必须是字母 或下划线。

跳转目标程序段中标记符后面必须以 **冒号结束**。标记符始终位于程序段段首。如果程序 段有段号,则标记符 **紧跟着段号**。

在一个程序中, 各标记符必须具有唯一的含义。

编程示例

N10 LABEL1: G1 X20	; LABEL1 为标记符,跳转目标
TR789: G0 X10 Z20	; TR789 为标记符, 跳转目标
	- 无段号
N100	; 程序段号可以是跳转目标

10.10.2 绝对程序跳转

功能

NC 程序在运行时按写入时的顺序执行程序段。

程序在运行时可以通过插入程序跳转指令改变执行顺序。

跳转目标只能是有标记符或一个程序段号的程序段。该程序段必须在此程序之内。 绝对跳转指令必须占用一个独立的程序段。

10.10 程序跳转

编程

图 10-42 绝对跳转举例

10.10.3 有条件程序跳转

功能

使用 IF 语句 表示 跳转条件。如果满足跳转条件(值不等于零),则进行跳转。 跳转目标只能是有标记符或一个程序段号的程序段。该程序段必须在此程序之内。 有条件跳转指令要求一个独立的程序段。在一个程序段中可能有多个条件跳转指令。 使用有条件跳转后有时会使程序得到明显的简化。

IF 条件 GOTOF Label	; 向前跳转
IF 条件 GOTOB Label	; 向后跳转
GOTOF	; 向前跳转(向程序结束的方向)
GOTOB	; 向后跳转(向程序开始的方向)
标记符	;所选择标记符的字符顺序(跳转标记)或程序段号
IF	; 引入跳转条件
条件	; 计算参数,条件的算术表达式

比较运算

运算符	含义
= =	相等
< >	不等
>	大于
<	小于
> =	大于或者等于
< =	小于或者等于

用比较运算可以表示跳转条件。计算表达式也可用于比较。

比较运算的结果为"满足"或"不满足"。"不满足"时,该运算结果为零。

比较运算编程举例

R1>1	; R1 大于 1
1 < R1	; 1 小于 R1
R1 <r2+r3< th=""><th>; R1 小于 R2 加 R3</th></r2+r3<>	; R1 小于 R2 加 R3
R6>=SIN(R7*R7)	; R6 大于等于 SIN (R7)的 2 次方

编程示例

N10 IF R1 GOTOF LABEL1 ; 当 R1 不等于零时,跳转到 LABEL1 程序段

10.10 程序跳转

```
. . .
N90 LABEL1:...
N100 IF R1>1 GOTOF LABEL2
                                ; 当 R1 大于 1 时,跳转到 LABEL2 程序段
. . .
N150 LABEL2: ...
. . .
N800 LABEL3:...
. . .
N1000 IF R45==R7+1 GOTOB LABEL3 ; R45 等于 R7 加 1 时,跳转到 LABEL3 程序段
. . .
一个程序段中有多个有条件跳转:
N10 MA1:...
. . .
N20 IF R1==1 GOTOB MA1 IF R1==2 GOTOF MA2 ...
. . .
N50 MA2: ...
```

说明

第一个条件实现后就进行跳转。

10.10.4 程序跳转举例

任务

```
圆弧上点的移动:
已知:
起始角: 30°, R1
圆弧半径: 32 mm, R2
位置间距: 10°, R3
点数: 11, R4
Z 轴上的圆心位置: 50 mm, R5
X 轴上的圆心位置: 20 mm, R6
```

10.10 程序跳转

图 10-43 在圆弧上线性运行至各点

程序举例

```
N10 R1=30 R2=32 R3=10 R4=11 R5=50 R6=20 ; 初始值分配
N20 MA1: G0 Z=R2*COS (R1)+R5 ; 计算以及轴地址赋值
X=R2*SIN(R1)+R6
N30 R1=R1+R3 R4= R4-1
N40 IF R4 > 0 GOTOB MA1
N50 M2
```

注释

在程序段 N10 中为相应的计算参数赋值。 在 N20 中计算坐标轴 X 和 Z 的数值计算并进 行赋值处理。 在程序段 N30 中, R1 增加 R3 间距角, R4 较少数值 1。 如果 R4 > 0, 重新执行 N20, 否则运行 N50, 程序结束。

10.11 子程序

10.11 子程序

10.11.1 概述

使用

从原则上讲主程序和子程序之间并没有区别。

用子程序编写经常重复进行的加工,比如某一确定的轮廓形状。在主程序中,可以在需要的位置调用并运行子程序。

子程序的一种形式就是**加工循环**。加工循环包含一般通用的加工工序。通过给规定的计 算参数赋值就可以实现各种具体的加工。

结构

子程序的结构与主程序的结构一样(参见章节"程序结构")。在子程序中与主程序一样, 也是在最后一个程序段中使用 M2(程序结束)结束运行。这就表示返回到所调用的程 序界面。

程序结束

除了用 M2 指令外,还可以用 RET 指令结束子程序。

RET 要求一个自身的程序段。

如果一个 G64 轨迹控制运行不要由于返回而中断,则需要使用 RET 指令。用 M2 指令则会中断 G64 运行方式并造成准停。

图 10-44 举例:两次调用子程序

子程序名称

为了能够从众多的子程序中挑选出一个确定的子程序,则子程序必须要有自己的名称。 在编制程序时可以自由选择名称,但是必须符合规定。

适用主程序命名的同样规则。

举例: BUCHSE7

- 另外,在子程序中还可以使用地址字 L... L...。其值可以是 7 位数(仅为整数)。
- 注意: 地址 L 中, 数字前的零有意义, 用于区别。
- 举例: L128 不是 L0128 或 L00128 !

以上表示3个不同的子程序。

说明: 子程序名称 LL6 预留给刀具更换!

子程序调用

在一个程序中(主程序或子程序)可以直接用程序名调用子程序。为此需要使用一个独立的程序段。 示例:

N10	L785	;	调用子程序	L785
N20	WELLE7	;	调用子程序	WELLE7

10.11 子程序

程序重复 P...

如果要求多次连续地执行某一子程序,则在编程时必须在所调用子程序的程序后**地址 P** 写入调用次数。最多可以运行 **9999 次 (P1** ... P9999)。 示例:

N10 L785 P3 ; 调用子程序 L785,运行 3 次

嵌套深度

子程序不仅可以在一个主程序中调用,而且还可以在另一个子程序中调用。这样的嵌套 调用总共有 8 个程序层 可供使用;包括主程序层。

图 10-45 8 个程序层的调用过程

说明

在子程序中可以改变模态有效的 G 功能,比如 G90 -> G91。 在返回调用程序时请注意检查一下所有模态有效的功能指令,并按照要求进行调整。

对于 R 参数也同样需要注意,防止用上级程序界面中所使用的计算参数来修改下级程序 界面的计算参数。

西门子循环进行工作时最多需要7个程序层。

10.11.2 调用加工循环

功能

循环是普遍用于特定加工过程的工艺子程序。 在解决具体问题时,通过改变参数/数值来 直接调用各个循环。

编程举例

N10 CYCLE83(110, 90,)	; 调用循环 83; 直接传送数值, ; 单独程序段
N40 RTP=100 RFP= 95.5	; 设定循环 82 的传送参数
N50 CYCLE82(RTP, RFP,)	; 调用循环 82, 单独程序段

10.12 定时器和工件计数器

10.12 定时器和工件计数器

10.12.1 运行时间定时器

功能

将定时器(Timer)作为系统变量(**\$A**…),用于监控程序中的工艺过程,或者仅用于显示。

这些计时器都是只读的。其中有些定时器始终有效。而其它定时器需要由机床数据激活。

定时器始终有效

• \$AN_SETUP_TIME

从上一次"使用缺省值启动 CNC"到现在的时间(以分为单位): 在"使用缺省值启动 CNC"时自动复位。

• \$AN_POWERON_TIME

从上一次系统上电后的时间(以分为单位) 系统每次上电时,自动设置为零。

可以取消的定时器

这些定时器可以使用机床数据来激活(缺省设定)。

开始是计时器专用的。 当程序停止或进给率修调为零,每个有效运行时间的测量将自动 中断。

当空运行进给和程序测试功能有效时,时间测量的使能可以由机床数据定义。

10.12 定时器和工件计数器

• \$AC_OPERATING_TIME

NC 程序在自动方式下总的运行时间(以秒为单位):

在自动方式下,从 NC 启动到程序结束/复位之间所有程序的运行时间累计值。系统每次上电后计时器自动设为零。

• \$AC_CYCLE_TIME

选择的 NC 程序的运行时间 (以秒为单位)

计算所选程序在 NC 启动和程序结束/复位之间的运行时间。 当新的 NC 程序启动时,该定时器被删除。

• \$AC_CUTTING_TIME

刀具切削时间(以秒为单位)

测量刀具有效时、NC 启动和程序结束/复位间、所有 NC 程序中进给轴(不带快速运行)的运行时间。

;刀具作用时间极限值?

当暂停时间生效时,计算被中断。

系统每次启动后计时器自动归零。

编程示例

```
N10 IF $AC_CUTTING_TIME>=R10 GOTOF WZZEIT
...
N80 WZZEIT:
N90 MSG ("刀具作用时间: 达到极限值")
N100 M0
```

显示

激活的系统变量内容显示在操作区域的屏幕 <参数>->"设定数据">"计时器/计数器":

总运行时间 = \$AC_OPERATING_TIME 程序运行时间 = \$AC_CYCLE_TIME 进刀时间 = \$AC_CUTTING_TIME 冷启动时间 = \$AN_SETUP_TIME 热启动时间 = \$AN_POWERON_TIME 此外,在 AUTO 运行方式下,在操作区域"加工"的提示行下显示"程序运行时间"。

10.12 定时器和工件计数器

10.12.2 工件计数器

功能

"工件计数器"功能提供了可用于计算工件数量的计数器。 该计数器作为系统变量,可以通过程序或操作(注意写保护级!)进行读写存取。 通过机床数据可以对计数器激活、归零时刻和计数算法产生影响。

计数器

• \$AC_REQUIRED_PARTS

所需工件的个数(工件给定值)

在此计数器中可以定义工件的个数,在到达这个数值之后,实际工件的个数 \$AC_ACTUAL_PARTS 归零。

可以通过机床数据激活显示报警 21800"已达到工件额定值"。

• \$AC_TOTAL_PARTS

全部已生产工件的数量(总实际值) 计数器给出所有自开始时刻起所生产的工件数量。 当控制系统启动时,计数器自动复位至零。

• \$AC_ACTUAL_PARTS

当前工件的数量(当前实际值)

在这种计数器中记录自开始时刻起所生产的所有工件数量。当达到工作额定值时 (\$AC_REQUIRED_PARTS,值大于零),计数器自动复位至零。

• \$AC_SPECIAL_PARTS

用户指定工件的数量

该计数器允许用户根据自定义来对工件计数。在与 \$AC_REQUIRED_PARTS (工件 给定值)一致时可以定义一个报警输出。用户必须自行将该计数器归零。

编程示例

```
N10 IF $AC_TOTAL_PARTS==R15 GOTOF SIST ; 达到工件数?
...
N80 SIST:
```

10.12 定时器和工件计数器

N90 MSG ("达到额定工件数") N100 M0

显示

激活的系统变量内容显示在操作区域的屏幕 <参数>->"设定数据">"计时器/计数器": 总件数= \$AC_TOTAL_PARTS 要求件数= \$AC_REQUIRED_PARTS 实际件数=\$AC_ACTUAL_PARTS, \$AC_SPECIAL_PARTS 不在屏幕中显示 此外,在 AUTO 运行方式下,在操作区域"加工"的提示行下显示"实际件数"。 10.13 一个程序段中包含多个进给率

10.13 一个程序段中包含多个进给率

功能

使用功能"一个程序段中包含多个进给率"可以与运行同步地激活:

- 一个 NC 程序段的不同进给率,
- 暂停时间以及
- 回程
- ,此功能与外部数字和/或模拟输入相关。

硬件输入信号组合在一个输入字节内。

编程

F2= F3=	除轨迹进给率外,还可以最多在此程序段内编写 2 个其他进给率;进给率程序 段方式有效
ST=	暂停时间(用于磨削工艺: 修光时间);程序段方式有效
SR=	返回行程;程序段方式有效。 返回行程的单位取决于当前尺寸单位(毫米或英 寸)
FMA [2,x] = FMA [3,x] =	除轨迹进给率外,还可以最多在此程序段内编写 2 个其他进给率;进给率程序段方式有效
STA=	轴向暂停时间(用于磨削工艺: 修光时间);程序段方式有效
SRA=	轴向返回行程;程序段方式有效

FMA和F值

轴向进给率(FMA 值)或者轨迹进给率(F 值)等于 100% 的进给率。利用这项功能可以实现小于或等于轴向进给率/轨迹进给率的各种进给率。

说明

如果基于外部输入编程轴的进给率、暂停时间或返回行程,那么程序段中的这根轴不能编程为 POSA 轴(超过程序段限制的定位轴)。

程序段预读功能在包含多个进给率的程序段中也有效。从而可以使用程序段预读功能来 限制当前进给率。

10.13 一个程序段中包含多个进给率

轨迹运动编程举例

轨迹进给率在地址 F 下编程,当没有输入信号时编程值一直有效。数字扩展名给出了输入的位编号,更改编号可激活进给率:

F3=20	; 3 表示输入位 3
F2=5	; 2 表示输入位 2
ST=1	; 暂停时间(秒)输入位 1
SR = 0.5	; 返回行程(毫米)输入位 0

轴向运动编程举例

轴向轨迹进给率在地址 FA 下编程,当没有输入信号时编程值一直有效。

可以用 FMA[3,x]= 到 FMA[2,x]= 在此程序段内最多为每个轴编写 2 个其他进给率。方括 号内的第一个表达式代表输入的位编号,第二个表示进给率所适用的轴:

```
      FMA[3, x]=1000
      ;x 轴的轴向进给率为 1000, 3

      表示输入位 3
```

轴向暂停时间和返回行程举例

暂停时间和返回行程可以在下列附加地址内进行编程:

STA[x]=	; 轴向暂停时间(秒)输入位 1
SRA[x]=	; 轴向返回行程(毫米) 输入位 0

如果暂停时间位 1 或者返回行程位 0 生效,那么将取消轨迹轴或相关几个轴的剩余行程 并启动暂停时间或者或开始返回。

举例: 一个程序段中包含多个加工过程

```
      N20 T1 D1 F500 G0 X100
      ; 起始位置

      N25 G1 X105 F=20 F3=5
      ; 粗磨用 F, 精磨用 F3,

      F2=0.5 ST=1.5
      ; 修光用 F2, 暂停时间为 1.5 秒,

      SR= 0.5
      ;返回行程为 0.5 毫米

      N30 ...
```

10.14 摆动

10.14 摆动

功能

一个摆动轴在两个换向点 1 和 2 之间以给定的进给率来回摆动,直至取消摆动运动。 在摆动运行期间可以任意插补其它的轴。通过一个轨迹运动或者用一个定位轴,可以达 到一个连续的横向进给。此时在摆动运动和进给运动之间**不存在关系**。

异步摆动特性

- 异步摆动在特定的轴上超越程序段界限有效。
- 通过零件程序保证摆动和程序段同步生效。
- 不可以共同插补多个轴和叠加摆动距离。

编程

使用下列地址可以由零件程序按照 NC 程序的处理方法激活和控制异步摆动。

编程的值在主运行中与程序段同步输入到相应的设定数据中,并且直至下一次修改一直保持有效。

启动/关闭摆动: OS

os[轴]	=	1:	启动
os[轴]	=	0:	关闭

参数

OSP1 [轴]=	换向点 1 的位置(摆动: 左侧换向点)
OSP2 [轴]=	换向点 2 的位置(摆动: 右侧换向点)
OST1 [轴]=	在换向点处的停留时间,单位秒
OST2 [轴]=	
FA [轴]=	摆动轴进给
OSCTRL [轴]=	(设置选项,复位选项)
OSNSC [轴]=	修光次数
OSE [轴]=	终点位置
OS [轴]=	1= 接通摆动轴; 0= 取消摆动轴

换向点的停留时间: OST1, OST2

停留时间	在准停范围内、换向点上的运动特性
-2	继续插补,无需等待准停
-1	等待粗准停
0	等待精准停
>0	等待精准停,并且接着等候停留时间

停留时间单位与 G4 编程的暂停时间的单位相同。

举例:摆动轴在两个换向点之间摆动

摆动轴 Z 应该在 10 和 100 之间摆动。 换向点 1 以精准停返回,换向点 2 以粗准停返回。 摆动轴进给率为 250,进行加工。 在加工结束处应当进行 3 次修光,并且使摆动轴到达终点位置 200。 横向进给轴的进给率是 1, X 方向的横向进给终点为 15。

```
N20 WAITP(X,Y,Z)
                                      ; 起始位置
N30 G0 X100 Y100 Z100
                                      ;转换到定位轴运行方式
N40 WAITP(X,Z)
N50 OSP1[Z]=10 OSP2[Z]=100 ->
                                      ; 换向点 1, 换向点 2
-> OSE[Z]=200 ->
                                      ;终点位置
-> OST1[Z]=0 OST2[Z]=-1 ->
                                      ; 换向点 1 的停留时间: 精准停;
                                      ; 换向点 2 上的停留时间: 粗准停
-> FA[Z]=250 FA[X]=1 ->
                                       ;摆动轴进给,进给轴
                                      ; 设置选项
-> OSCTRL[Z]=(4,0) ->
-> OSNSC[Z]=3
                                      ;三次修光
N60 OS[Z]=1
                                      ;启动摆动
N70 POS[X]=15
                                       ; x 轴初始位置
N80 POS[X]=50
N90 OS[Z]=0
                                       ;停止摆动
N100 M30
```

-> 可以在某个程序段中编程。

10.14 摆动

说明

对于摆动轴:

- 每个轴可以作为摆动轴使用。
- 可以同时有几个摆动轴有效(最多为定位轴个数)。
- 对于摆动轴而言,直线插补 G1 始终有效,而与程序中当前有效的 G 指令无关。 摆动轴可以:
- 是动态转换的输入轴,
- 是龙门轴和联动轴时的引导轴,
- 运行

•

- 没有急冲限制 (BRISK) 或者
- 有急冲限制 (SOFT) 或者
- 有曲折的加速特性曲线(如同定位轴)。

摆动换向点

在确定摆动位置时必须考虑当前的偏移:

绝对尺寸
OSP1[Z] = 值 1
换向点位置 = 偏移 + 编程值之和
相对尺寸
OSP1[Z]=IC(值)
换向点位置 = 换向点 1 + 编程值
举例:
N10 OSP1[Z] = 100 OSP2[Z] = 110
.

N40 OSP1[Z] = IC(3)

说明

WAITP(轴):

- 如果要用几何轴进行摆动,则必须使用 WAITP 释放该轴进行摆动。
- 在摆动结束之后,用该指令把摆动轴再次定义为定位轴,并且可以再次正常使用。

设置进给率,FA

进给速度指定位轴的定义进给速度。 如果没有定义进给速度,则机床数据中存储的值生效。

定义运动过程, OSCTRL

在设置和复位选项中调整该运动过程的设置。 OSCTRL[摆动轴] = (设置选项,复位选项) 设置选项的定义如下(复位选项可以取消该设置):

复位选项

取消该选项(仅在之前已选择该选项时可取消)。

设置选项

转换该选项。当编程 OSE (终点位置)时,选项4会隐式有效。

选项值	意义
0	取消摆动时停止在下一个换向点(预设置);只在复位值1和2 时可进行
1	取消摆动运动时停止在换向点 1 处
2	取消摆动运动时停止在换向点 2 处
3	如果没有编程修光次数,则在取消摆动运动时不返回换向点。
4	在修光后返回终点位置
8	取消剩余行程而停止摆动时:紧接着进行修光,如有可能,返回终点。

10.14 摆动

选项值	意义
16	取消剩余行程而停止摆动时:则返回和取消摆动时一样的反向位置
32	修改的进给率从下一个换向点开始才有效
64	FA 等于 0, FA = 0: 位移叠加有效
	FA 不等于 0, FA <> 0: 速度叠加有效
128	在回转轴 DC 时(最短的行程)
256	=两次修光(标准) 1=单次修光。

通过正号将多个选项相加在一起。

举例:

取消轴 Z 的摆动时,轴停止在换向点 1。此时应当

- 向某个终点位置运动,
- 修改的进给率立即生效,并且取消剩余行程后,轴立即停止。

OSCTRL[Z] = (1+4.16+32+64)

11

网络运行

11.1 网络运行的前提条件

引言

控制系统可通过网络功能与 PG/PC 进行通讯。

前提条件

通讯需要使用 PG/PC 上安装的 RCS802 工具。 可通过各种方式将控制系统连接至网络。 这些方式将在"RCS 工具"和"网络运行"章节进行介绍。 通过控制系统上的以下接口进行连接:

- RS232 接口
- 点对点以太网接口
- 以太网接口(仅用于 SINUMERIK 802D sl pro)

网络运行

11.2 RCS802 工具

11.2 RCS802工具

使用 RCS(远程控制系统)工具可以在 PG/PC 上对 SINUMERIK 802D sl 进行日常操作。

RCS802 工具是 SINUMERIK802Dsl 的组件并且在控制系统供货时以 CD 形式随附。 控制系统与 PG/PC 可通过以下接口建立连接:

表格 11-1 接口

接口	SINUMERIK 802D sl	PG/PC 上使用的 RCS802
RS232	在 value,plus 和 pro 中可 用。	可用。
点对点以太网	在 value,plus 和 pro 中可 用。	可用。
以太网网络	仅在 SINUMERIK 802D sl pro 中可用。	许可证相关功能

有许可证密钥的 RCS802 工具的功能

注意

输入 RCS802 的许可证密钥后才可以获得 RCS 工具的全部功能。

表格 11-2 RCS802 工具的许可证相关功能

功能	无许可证密钥的 RCS802 工 具	有许可证密钥的 RCS802 工 具
项目管理	是	是
与 SINUMERIK 802D sl 交 换数据	是	是
调试 SINUMERIK 802D sl	是	是
设置共享驱动	否	是
远程操作	否	是
截屏(SnapShot)	否	是

RCS802 工具

图 11-1 RCS802 工具的浏览器窗口

启动 RCS802 工具后进入离线模式。在该模式下您只能管理自己 PC 上的文件。

在 ONLINE 模式中可以额外使用目录 Control 802。这个目录实现了与控制系统的文件交换。此外远程服务功能还可以用于过程显示。

在对话框"Connection Settings"中的菜单"Setting" > "Connection"中可以设置或激活 PG/PC 到控制系统的在线连接。

Connection settings		
Select connection		
🔿 via RS232		
 via Ethernet (network) 		
🔿 via Ethernet (peer to peer)		
Configure	ОК	

图 11-2 Connection Settings

说明

在 RCS 工具中提供有详细的在线帮助信息。 其他的操作步骤, 比如: 建立连接、项目管 理等, 请从帮助中查取。

```
网络运行
```

11.2 RCS802 工具

在控制系统上建立 RS232 连接的操作步骤

● 进入<SYSTEM>操作区。

● 按下"PLC"软键。

★ Ref Point 通讯设置		调制解调设置
有效通讯参数		
调制解调器有效	OFF	
波特率 停止位 奇偶校验 数据位	38400 💿 1 Even 8	
		激 活 连 接
^		
STEP7 PLC 状态 连接 状态 列表	PLC 程序 程序 列表	编PLC 报警文本
图 11-3 RS232	通讯设置	

Step 7连接

• 在"STEP 7 连接"对话框中设置通讯参数。

• 按下软键"激活连接"来激活 RCS232 连接。

ĺ	通讯设置				调制解调
	古法院市主要学				
	伯刈畑机乡奴				
	调制解调器有效	OFF			
	波特率 停止位	38400 1			
	奇偶校验 数据位	Even 8			
					连 接
					关闭
				1 <u>8</u>	
	STEP7 PLC 状态 连接 状态 刚丰	PLC 程 坦应 列	序		编PLC 据整立 _地
			12		「医胃入生

图 11-4 RS232 连接有效

在该状态下不能对设置进行更新。

软键名称变为"断开连接"。

屏幕右下方显示图标,表示通过 RS232 接口建立的与 PG/PC 的连接有效。

在控制系统上建立点对点以太网连接的操作步骤

SHIFT + SYSTEM

- 进入<SYSTEM>操作区。
- **维修** 显示
- 按下软键"显示信息" > "控制系统信息"。

维修 控制系统

网络运行

11.2 RCS802 工具

- 图 11-5 控制系统服务
- 直接 连接

直接 连接 ● 按下软键"直接连接"。

在 HMI 上显示以下信息:

"连接已建立"

- IP 地址: 169.254.11.22
- 子网掩码: 255.255.0.0
 所显示的 IP 地址和子网掩码为固定值。
 这些值无法修改。
- 通过软键"直接连接"可再次取消点对点以太网连接。

在控制系统上建立以太网连接的操作步骤

● 进入<SYSTEM>操作区。

• 按下软键"显示信息" > "控制系统信息"。

网络运行

11.2 RCS802 工具

维修 网络

• 按下软键"网络服务"(只能在 SINUMERIK 802D sl pro 上使用)。

文献参考

SINUMERIK 802D sl 编程与操作手册; 网络操作

11.3 网络运行

11.3 网络运行

说明

只有在 SINUMERIK 802D sl pro 上才可以使用网络运行功能。

通过集成的网络适配器,控制系统能够以网络方式运行。可能有以下连接:

- 点对点以太网: 使用交叉电缆将控制系统与 PC 直接连接在一起
- 以太网网络: 通过一根双绞线将控制系统连接到现有网络中。

802D 专用的传输协议可以使用编码数据传输实现封闭式网络运行。此外该协议还可以与 **RCS** 工具一起用于零件程序的传输或加工。
网络运行 11.3 网络运行

11.3.1 网络连接的配置

前提条件

控制系统通过接口 X5 与 PC 或本地网络相连。

输入网络参数

转换至<SYSTEM>操作区。

维修 控制系统

按下软键"显示信息" "控制系统信息"。

维修 网络

通过软键"网络信息"进入网络配置窗口。

网络配置		授权
局部说明		
协议:	TCP / IP	连 接 断 开
DHCP :	是	
计算机名称:	dyn001420	
IP 地址:	10 113 22 10	
子网络表征码	255 255 255 0	
网关:		
DNS 1:		
2:		h#
3:		仔馆
DNS Domain:	erlf.siemens.de	
监控时间	30 s	
MAC 地址:	08-00-06-9e-d8-56	
	<u>8.8</u>	💙
山中石 収 动 外部总 至	⁸⁰³	
- ^{袖信息} 信息 线信息 通	讯 概览 轨迹	版本

图 11-7 "网络配置"基本画面

11.3 网络运行

参数	说明
DHCP	DHCP 协议: 在网络中需要一个动态分配 IP 地址的 DHCP 服务器。
	选择否进行固定网络地址的赋值。
	选择 是进行动态网络地址分配。会跳过不需要的输入区。
	如果选择了"是",则须执行以下步骤来激活计算机名称、IP 地址和子
	网掩码的输入区:
	1. 按下垂直软键"保存"。
	2. 关闭并重启控制系统。
计算机名称	网络中控制系统的名称
IP 地址	网络中控制系统的地址(比如: 192.168.1.1)
子网掩码	网络标识(比如: 255.255.252.0)

表格 11-3 需要进行的网络配置

释放通讯端口

服务 防火墙

通过软键"防火墙信息"可以禁止或释放通讯端口。

为了尽可能地保证安全,应当关闭所有不需要的端口。

RCS 网络需要使用端口 80 和 1597 进行通讯。

可以通过光标选择相应的端口,来改变端口的状态。按下<Input>键来改变端口状态。 打开的端口会一直显示在控制框中。 11.3 网络运行

11.3.2 用户管理

在<系统>操作区域中,按下软键"显示信息""控制系统信息"。

权限

通过软键"网络信息" "权限"进入用户节点的输入屏幕窗口。

× Ref Point	
授权	
用户:	
Everyone	创建
SERVICE	-
PEERTOPEER	列 表 导 出
	利志
	列表导入
	删除
<u> </u>	
· · · · · · · · · · · · · · · · · · ·	返回

图 11-9 用户节点

用户账户用于存储用户的个人设置。在输入区中输入用户名称和登录密码,创建新的用户 账户。

用户帐户是在 PG/PC 上进行 HMI 与 RCS 工具通讯的前提条件。

用户必须在 HMI 上通过网络进行 RCS 登录时输入该密码。

当用户从 RCS 工具上与控制系统建立通讯时,也同样需要该密码。

软键功能"创建"可以在用户管理中添加一个新用户。 软键功能"删除"可以从用户管理中删除所选定的用户。

11.3.3 用户登录 - RCS 登录

RCS 登录

在<系统>操作区中按下软键"RCS 登录"。用户登录输入窗口打开。

Ref	Point				
机床配置					· · · · · · · · · · · · · · · · · · ·
뮥	轴索引	名称	轴类型	驱动号	
1	1	X1	直线轴	1	注销
2	2	Z1	直线轴		
3	3	SP	主轴		
(H do 2	<u>*</u> =				
<u>т</u>	£ 2K				
当前	用户	SERVICE			
月戸	: SE	RVICE			
	• • •	「星友口会」			
· · · · ·					
,					《 条条 该 回

图 11-10 用户登录

登录

在相应的输入栏中输入用户名称和密码,并按下软键"登陆"。 在登录成功后,会在**当前用户**栏中显示用户名称。 软键功能"返回"可以关闭对话框。

说明

登录也可以同时进行远程连接的用户识别。

网络运行

11.3 网络运行

注销

按下软键**"注销"**。可以注销当前用户,会保存用户专用数据并清除所有分配出的控制资源。

11.3.4 使用网络连接进行工作

在供货状态下,禁止远程访问控制系统(由 PC 或网络访问控制系统)。 在一本地用户登录后,下列功能供 RCS 工具使用:

- 调试功能
- 数据传输(传输零件程序)
- 控制系统的远程条件

如需对文件系统进行部分存取时,应当预先共享相应的目录。

说明

通过共享目录可以让网络用户对控制系统的文件进行存取。 按共享选项,用户可以修改或删除数据。

11.3 网络运行

11.3.5 共享目录

使用该功能可以确定远程用户对控制系统中文件系统的存取权限。

PROGRAM MANAGER

在程序管理器中选择所要共享的目录。

通过软键"其他...">"共享"打开输入屏幕窗口,用来共享所选定的目录。

Ref Point	
释放	添 加
N:\MPF\	
◎未释放该目录。	删除
□释放该目录	
使能名称: MPF	
释放用于: 存取权: □完令存取权 □更改 □操	
	中断
22 RC32	确认

图 11-11 共享状态

- 为选出的目录选择其共享状态:
 - 不共享该目录 目录不被共享
 - 共享该目录 共享目录, 需要输入共享名。
- 在区域共享名中输入名称,授权用户可以通过该名称存取目录下的文件。
- 按下软键"添加"进入用户表。选择用户。使用"添加"在"与...共享"区域中进行输入。
- 确定用户权利(权限)。
 - 完全存取用户具有完全存取权限
 - 修改允许用户进行修改
 - 读取允许用户读取文件
 - 删除允许用户删除文件

用软键"确定"确认设置的属性。共享的目录在窗口中会通过"手"标记进行标识。

11.3.6 连接和断开网络驱动器

SHIFT + SYSTEM

在<SYSTEM>操作区域中,按下软键"维修信息"、"系统通讯"、"网络信息"。

连接 断开

通过"连接/断开"进入网络驱动器的配置区。

图 11-12 网络连接

连接网络驱动器

连接

使用"连接"功能可以为网络驱动器分配一个本地的系统驱动器。

说明

在 PG/PC 上已向特定用户共享了网络驱动器连接目录。 在 RCS 工具中提供有详细的在线帮助信息。获取帮助信息的步骤请参见"RCS802 共享 驱动"章节。 11.3 网络运行

Kef Point		
网络驱动器配	<u><u> </u></u>	连 接
驱动器 :	H: 🎎 \\157.163.240.241\LWPC\	
	K:	
	L:	
	M :	
	N: D:	RCS网络
	P:	1992D
	Q:	
	R:	
		_
	示例:\\服务器\使能名称	
路径:	\\157.163.240.241\LWPC	
	음음 RCSE	返回

图 11-13 连接网络驱动器

连接网络驱动器的操作步骤

- 1. 将光标移动至任意驱动器。
- 2. 使用 TAB 键切换到输入区"路径"。

输入服务器的 IP 地址和共享名。

示例: \\157.163.240.241\

连接

按下"连接"。

服务器与控制系统的驱动相连接。

说明

例如现在可执行外部子程序,参见"自动运行" -> "外部执行"章节。

断开网络驱动器

断开

通过软键"<<返回"使用功能"断开"来取消已建立的网络连接。

- 1. 将光标移动至相应的驱动器。
- 2. 按下软键"断开"。

将所选择的网络驱动器从控制系统断开。

12

保存数据

12.1 通过 RS232 接口进行数据传输

功能

通过控制系统的 RS232 接口可以将数据(比如零件程序)读出到外部存储设备中,同样 也可以从那里读入数据。 RS232 接口和其数据存储设备必须相互匹配。

操作步骤

PROGRAM MANAGER

选择操作区<PROGRAM MANAGER>,并进入已经创建好的 NC 程序主目录。 使用光标或者 "全部选中" 选出所要传输的数据,

复制

并将其复制到剪贴板中。

RS232

选择软键 "RS232",并选定需要的传输模式。

保存数据

12.1 通过 RS232 接口进行数据传输

发送 按下"发送"启动数据传输。所有复制到剪贴板的文件被传送出去。

其他软键

通过 RS232 接口装载文件

本层中包含以下功能:

传输协议

所有被传输的文件按状态信息进行排列。

- 对于将要输出的文件
 文件名称
 故障应答
- 对于将要输入的文件
 - 文件名称与路径数据
 - 故障应答

表格 12-1 传输提示信息

ОК	传输正常结束
ERR EOF	接收文本结束符号,但存档文件不完整
Time Out	时间监控报警传输中断
User Abort	通过软键 <停止> 结束传输
Error Com	端口 COM 1 出错
NC / PLC Error	NC 故障报警
Error Data	数据错误
	1. 文件读入时带有/不带先导符
	或
	2. 以穿孔带格式发送的文件没有文件名。
Error File Name	文件名称不符合 NC 的命名规范。

保存数据

12.2 创建并读出或读入开机调试存档

12.2 创建并读出或读入开机调试存档

文献参考

SINUMERIK 802D sl 操作说明 车削、铣削、磨削和步冲;数据备份和批量调试

操作步骤

调试文件

在<SYSTEM>操作区中选择"调试文件"。

创建调试存档

可以使用所有组件创建完整的调试存档,也可以有选择的进行创建。 在进行有选择编制时要执行以下操作:

802D 数据

按下"802D 数据"使用方向键选择"调试存档(驱动/NC/PLC/HMI)"行。

使用<Input>键打开目录,并用<Select>键选中需要的行。

按下软键**"复制"**。文件复制到剪贴板中。

图 12-2 复制调试存档, 完整

12.2 创建并读出或读入开机调试存档

802D数据	
N882DN升机调试又档(驱动/NC/PLC/HMI)	
	新目录
I NC数据	
□ ML 日录 □ 经打误差补偿	
PLC项目(*.PTE)	
■■■類据及应用程序	会进
	主心
	复制
	粘贴
	删除
	AL 4+
	继 奕
882D 用户 RCS连接 RS232 制造商 USB 厂商 数 据 CF 产 RCS连接 RS232 或升器 或升器 友特	

图 12-3 编制调试存档

按下<Select>键单独选择/取消调试存档中的文件。

将调试存档写入用户 CF 卡/USB 设备

前提条件: 已插入 CF 卡/USB 设备,并且调试存档已经被复制至剪贴板中。 操作步骤:

用户	CF	卡

或

USB 驱动器

按下软键"用户 CF 卡"或"USB 设备"。 在目录中选择存放位置(目录)。

粘贴

使用软键"粘贴"开始写入调试存档。

在后面的对话框中确认提供的名称或者输入新名称。按下"确定"键关闭对话框。

保存数据

12.2 创建并读出或读入开机调试存档

▲ ■ MDA 用户GF卡		
D: 名称大小KB € · · ·		
B82Ds1.ing 125.440 □ Cycles Kopie von saud g.ini □ Linui 方地文// タチ 6		
allgh 仲恒人广日称 cd.z keys keys set ĭ if输入存档文件名称!		
● set. 从	┦┣	
j≡] snac <u>ti i</u>		
		× ₱断
		✔))) ()
		_

图 12-4 粘贴文件

从用户 CF 卡/USB 设备读取调试存档

执行以下操作步骤读取调试存档:

- 1. 插入 CF 卡/USB 设备
- 2. 按下软键"用户 CF 卡"/"USB 设备"并选中所需存档文件所在的行。
- 3. 按下软键"复制"将文件复制到剪贴板中。
- 4. 按下软键"802D 数据",并将光标定位至调试存档(驱动/NC/PLC/HMI)所在行。
- 5. 按下软键"粘帖", 启动调试。
- 6. 确认控制系统上的启动对话。

保存数据

12.3 读入和读出 PLC 项目

12.3 读入和读出 PLC 项目

在读入项目时先将其传输至 PLC 的文件系统中然后将其激活。 可以通过热启动控制系统 来终止激活。

从用户 CF 卡/USB 设备读取项目

执行以下操作步骤读取 PLC 项目:

- 1. 插入 CF 卡/USB 设备
- 2. 按下软键"用户 CF 卡"/"USB 设备"并选中所需项目文件(PTE 格式)所在的行
- 3. 按下软键"复制"将文件复制到剪贴板中。
- 4. 按下软键"802D 数据",并将光标定位至 PLC 项目(PT802D *.PTE) 所在行。
- 5. 按下软键"粘贴",开始读入并激活。

将项目写入用户 CF 卡/USB 设备

必须执行以下操作步骤:

- 1. 插入 CF 卡/USB 设备
- 2. 按下软键"802D 数据",并用方向键选择 PLC 项目 (PT802D *.PTE) 所在行。
- 3. 按下软键"复制"将文件复制到剪贴板中。
- 4. 按下软键"用户 CF 卡"/"USB 设备"并选择文件的存放位置
- 5. 按下软键"粘帖",开始写入过程。

12.4 复制和粘贴文件

在<PROGRAM MANAGER>操作区域和功能"调试文件"下可以使用软键功能"复制"和"粘贴"将文件或者目录复制到另一个目录或者驱动器。使用"复制"功能将文件或者目录的参考信息记录到一个列表中,随后使用"粘贴"功能。此功能执行真正的复制过程。

列表保持不变,直至新的复制覆盖此列表。

例外:

如果将 RS232 接口选作数据传送目标,则软键功能"发送"取代功能"粘贴"。在读取文件 (软键"接收")时,无需说明目标路径,因为数据流中已包含目标目录的名称。 保存数据

12.4 复制和粘贴文件

13

功能

PLC用户程序由大量的逻辑运算构成,用来实现安全功能并支持加工过程。这些逻辑运 算包括各种触点和继电器的连接。原则上单个触点或继电器的故障都会导致整个设备发 生故障。

为了找出故障原因或程序错误,在<SYSTEM>操作区中提供有各种诊断功能。

操作步骤

PLC

在<SYSTEM>操作区中按下软键"PLC"。

PLC 程序

按下"PLC 程序"。

打开保存在永久存储器中的项目。

13.1 屏幕结构

13.1 屏幕结构

屏幕的各个主要区域已在章节"软键界面";"屏幕划分"中作了详细介绍。 下面将对 PLC 诊断时屏幕的不同之处与补充要点进行说明。

图 13-1 屏幕结构

表格 13- 1	屏幕结构的图例说明

图形单元	显示	意义
1	应用区域	
2	所支持的 P	LC 编程语言
3	有效程序段	的名称
	显示:符号	名称(绝对值名称)
4	程序状态	
	RUN	程序正在运行
	STOP	程序已停止
	应用区域状	态
	Sym	符号显示
	abs	绝对值显示
5	<u> 🕹 🖸</u>	有效按键显示

13.1 屏幕结构

图形单元	显示	意义			
6					
	接受光标所	选中的任务			
0	提示行				
	在"查找"时	显示提示信息			

13.2 操作选项

13.2 操作选项

除了软键和方向键以外,在该区域中还提供有其他的按键组合。

按键组合

可以通过 PLC 用户程序移动光标键。当到达窗口边界时,它会自动滚动。

表格 13-2 按键组合

按键组合	动作
NEXT WINDOW	到达行的第一列
或 CTRL	
END	到达行的最后一列
或 CTRL	
PAGE	向上翻屏
PAGE DOWN	向下翻屏
	左移一个区域
	右移一个区域
	上移一个区域
	下移一个区域

13.2 操作选项

按键组合	动作
CTRL	到达第一个网络的第一个区域
CTRL END 或 CTRL	到达第一个网络的最后一个区域
CTRL PAGE UP	在同一个窗口中打开下一个程序块
CTRL 和 PAGE DOVIN	在同一个窗口中打开上一个程序块
SELECT	选择按键的功能取决于输入焦点所在的位置。 表格行:显示完整的文本行 网络标题:显示网络注释 指令:显示完整的操作数信息
	输入焦点位于指令上时,显示包含注释在内的所有操作数 信息。

13.2 操作选项

软键

PLC 信息

使用该软键将显示以下 PLC 属性:

- 运行状态
- PLC 项目名称
- **PLC** 系统版本
- 循环时间
- PLC 用户程序的执行时间

✓ 333			
SIMATIC LAD MAIN(O	31)	符号	复。位
操作状况	运行		执行时间
口 项目 名称 最后的更改	Koffer_Hannelore_PP_MILL_ 02/07/2008 07:	_TURN_TEACH_IN 56	
──版本 ──── PLC PLC 系统	802Ds1 TM pro 04.05.05		
循环时间(ms)	9		
处理时间(us) — 最后的 最小值 最大值	315 233 382	**	
PLC PLC 信息 状态	状态 窗 口 ¹ 列表 0B1	窗口2 SBR0	交叉参考

图 13-2 PLC 信息

使用软键"复位程序执行时间"复位执行时间数据。

PLC 状态

在"PLC 状态显示"窗口中,可在程序执行的同时监控和修改操作数的值。

13.2 操作选项

PLC 状态显示		有效		操作数+
	操作数 VB17000000	格式 B	·值 8888 8888	
	YB17000001	в	0000 0000	操作数-
	YB17000002	В	0000 0000	
	IB12	В	0000 0000	
	C1	D	0	
				删除
				更改
1			RCS보	
PLC PL	.C 状态		窗口1 窗口2	交叉
信息	念 列表		ORT 2RK0	

图 13-3 PLC 状态显示

1	
	小七十
	扒心
	71+
	別表
	1 2.00

使用软键"状态表"可以显示并修改 PLC 信号。

~						
IBØ	[R / W]	MBØ	[R / W]	QBØ	[R / W]	
0	00000000	0	00000000	Ø	00000000	
1	00000000	1	00000000	1	0000000	
2	00000000	2	00000000	2	0000000	
3	0000000	3	00000000	3	0000000	
4	00000000	4	00000000	4	0000000	编辑板
5	00000000	5	00000000	5	0000000	
6	0000000	6	00000000	6	0000000	
7	00000000	7	00000000	7	0000000	
8	00000000	8	00000000	8	0000000	
9	0000000	9	00000000	9	00000000	更改
10	00000000	10	00000000	10	0000000	
11	00000000	11	00000000	11	00000000	
12	00000000	12	00000000	12	00000000	
13	00000000	13	00000000	13	00000000	
14	00000000	14	00000000	14	0000000	
15	00000000	15	00000000	15	00000000	
1					음 RCS 온	
PLC	PLC 👌	く态	窗口	1 👸	<u>∄</u> ∐2	交叉
信息	状 态 🔰 🦻	リ表	OB1	SB	RØ	参考

图 13-4 状态表

窗口 1 OB1

使用软键 "窗口 1..." 和 "窗口 2..." 可显示程序段所有的逻辑信息和图形信息。 程序段是 PLC 用户程序的组成部分。

程序段可在 "程序表" 中通过软键 "打开" 进行选择。 程序段的名称接着使用软键进行输入 (对于"..." 如 "窗口 1 SBR16")。

梯形图 (LAD) 中的逻辑关系显示如下:

13.2 操作选项

- 带有程序段和电路的网络
- 通过一系列逻辑连接的电流流量

图 13-5 窗口 1, OB1

程序块

使用软键可以选择 PLC 程序段列表	ڈ ،

SIMATIC LAD MA	EN(OB1)		符号		属性
网络 5 ^A × 0NE	程序模块 SBR40			<u> </u>	局部
	绝对名称	符号名称			变量
ON	OB1 SBRØ	MAIN SBR_Ø			保护
ONI	SBR1	REF_POINT			
	SBR3	SIMUL_INT			打开
MØ, ONI ONI	SBR31	USR_INI			
MØ. MØ.	SBR33	EMG_STOP			
MAG AU	SBR34 SBR35	MCP_802D SPD_0VR			
	SBR37	MCP_SIMU			
MØ.3	SBR38 SBR39	MCP_NCK HANDWHL			
网络 5 行	SBR40	AXIS_CTL			
				RCS	返回
PLC PLC 信息 状态	状 态 5 列 表	窗口1 0B1	窗口2 SBR0		交叉参考

图 13-6 选择 PLC 程序段

属性

使用该软键将显示所选程序段的以下属性:

13.2 操作选项

- 符号名称
- 创建人
- 注释

图 13-7 所选 PLC 程序段的特性

使用该软键可以显示所选程序段的局部变量列表。

有两种类型的程序段

局部

变量

- OB1 只是临时的局部变量
- SBRxx 临时的局部变量

×							
SIMATI	C LAD MAIN	(OB1)			符号	<mark>. </mark>	
局部变	量					<u>ں</u>	
EN							
	名称	变量类型	数据类型	注释			
	EN	IN	QWBOOL				
LWØ	NODEF	IN	QWWORD				
L2.0	T_64	IN	QWBOOL	Status of t	erminal 64	l from ~	
L2.1	T_63	IN	QWBOOL	Satus of te	rminal 63	from I~	
L2.2	OPTM	IN	QWBOOL	Switch (NO)	for brake	e relea~	
L2.3	_1LMTp	IN	QWBOOL	Positive ha	rdware lin	nit swi~	
L2.4	_1LMTn	IN	QWBOOL	Negative ha	rdware lin	nit swi~	
L2.5	_1REF	IN	QWBOOL	Reference C	an of 1st	axis (~	
L2.6	_2LMTp	IN	QWBOOL	Positive ha	rdware lin	nit swi~	
L2.7	_2LMTn	IN	QWBOOL	Negative ha	rdware lin	nit swi~	
L3.0	_2REF	IN	QWBOOL	Reference C	an of 2st	axis (~	
L3.1	_3LMTp	IN	QWBOOL	Positive ha	rdware lin	nit swi~	
L3.2	_3LMTn	IN	QWBOOL	Negative ha	rdware lin	nit swi~	
L3.3	_3REF	IN	QWBOOL	Reference C	an of 3st	axis (~	
						RCSE	返回
PLC 信自	PLC 壮本	状态		窗 口1 0B1	窗口2 SBR0		交叉参考
日 心	111 101	19 14					213

图 13-8 所选 PLC 程序段的局部变量表

当前光标所在位置的文本会补充显示在表格上方的文本区中。 对于较长的文本,可在该区域中通过按 SELECT 键显示整个文本。

13.2 操作选项

保护

打开

程序 状态 OFF 如果程序段具有密码保护,则可以通过该软键在梯形图中自由切换显示。

为此必须设置密码。密码可以在编写程序段时在编程工具 PLC802 中设置。

打开已选择的程序段。

程序段的名称(绝对值)接着使用软键 "窗口 1..." 进行输入(对于"..." 如 "窗口 1 OB1")。

使用该软键可以激活或取消程序状态的显示。

可对 PLC 循环结束时网络的当前状态进行监控。

在 LAD (梯形图) 程序状态 (右上方的窗口中) 中显示有所有操作数的状态。 该状态中 包括有多个 PLC 循环中所显示的状态值, 然后在状态显示中进行刷新。

图 13-9 程序状态 ON - 符号显示

13.2 操作选项

图 13-10 程序状态 ON - 绝对值显示

符号 地址

使用该软键可以在操作数的绝对值显示和符号显示之间进行切换。 软键名称也相应的发生改变。

按照所选的表示方式,以绝对值或符号形式显示操作数。

如果变量没有符号,则自动以绝对值方式显示。

缩放	
+	
缩放	

显示应用程序区时,可以逐步放大或缩小。可以提供以下放大级别: 20%(标准显示)、60%、100%和 300%

搜索

查找以符号或绝对值方式显示的操作数(见下图)。

在所显示的对话框中可以选择各种查找标准。 使用软键"绝对/符号地址"可以在两个 PLC 窗口(见下图)中查找符合此标准的操作数。 查找时忽略字母的大小写区别。

在上面的转换区中选择:

- 查找绝对值或符号显示的操作数
- 查找网络号
- 查找 SBR 指令

其他查找标准:

- (从当前光标位置)向下查找
- 整个程序段(从程序开端)

13.2 操作选项

- 在一个程序段中
- 在所有程序段中

可以使用整个单词(名称)来查找操作数与常量。

可以根据显示的设置,查找符号或绝对值形式的操作数。

按下软键"确定"开始进行查找。用焦点标记出所找到的目标。如未找到任何结果,则提示行中会出现相应的错误信息。

使用软键"取消"退出对话框。而不进行查找。

图 13-11 查找符号形式的操作数

13.2 操作选项

图 13-12 查找绝对值形式的操作数

找到查找目标后,可以使用软键"继续查找"继续目标的查找。

符号 信息

使用该软键可以显示所选网络中所有的符号形式名称。

× jui								
SIMATIC LAD AXIS_CTL(SE	R40)	abs	<u> </u>					
网络 1 Check the a intermediat	网络 1 Check the axes configuration, and assign Intermediate variable for axis control							
SM0.0 VU4500~ 	HOUB EN ENO - IN OUT- LB5							
VW4500~	EN ENO							
+1 16#27	7 IN OUT LB5							
VW4500~								
+2								
网络符号数据表			<u></u>					
MD_HEX_16								
MD_HEX_16	VB45001016 MD14512[16]	byte						
MD_INT_16	YW45000032 MD14510[16]:	0: free; 1	1: turn~					
ONE	SM0.0 Flag with de	fined ONE si	ignal					
1			RCS E	返回				
PLC PLC 状 信息 状态 列	态 表 SBR40	窗口2 SBR0		交叉参考				

图 13-13 网络的符号信息列表

交叉 参考

使用软键可以选择对照列表。 将显示 PLC 项目中所使用的所有操作数。 通过该列表可以确定,在哪些网络中使用了输入、输出、标志等。 13.2 操作选项

2	200 200								
SIMATIC	: LAD	MAINCO	B1)				符5		
MD_INT_	_16:Y₩4	15000032	2						
自	é元			模块		地址	1	状态	
31 🔢	D_INT_	<u>16:</u> YW45	000032	PLC_INI	(SBR32)	网络	3	- ==I -	
32 M	D_INT_	16:YW45	000032	PLC_INI	(SBR32)	网络	3	-1==I1-	
33 M	D_INT_	16:YW45	000032	PLC_INI	(SBR32)	网络	4	-1==I1-	绝对
34 M	D_INT_	16:YW45	000032	PLC_INI	(SBR32)	网络	4	-1==I1-	地址
35 M	D_INT_	16:YW45	000032	PLC_INI	(SBR32)	网络	4	-1==I1-	
36 M	D_INT_	16:VW45	000032	PLC_INI	(SBR32)	网络	5	-1==I1-	在窗口1
37 M	D_INT_	16:YW45	000032	PLC_INI	(SBR32)	网络	5	-1==I1-	打开
38 M	D_INT_	16:YW45	000032	PLC_INI	(SBR32)	网络	6	-1==I1-	左窗□2
39 M	D_INT_	16:YW45	000032	PLC_INI	(SBR32)	网络	6	-1==I1-	
40 M	D_INT_	16:YW45	000032	EMG_STOP	(SBR3~	网络	1	-I==II-	
41 M	D_INT_	16:YW45	000032	EMG_STOP	(SBR3~	网络	1	-1==I1-	捕壶
42 M	D_INT_	16:YW45	000032	EMG_STOP	(SBR3~	网络	1	-1==I1-	1克 赤
43 M	D_INT_	16:VW45	000032	EMG_STOP	(SBR3~	网络	1	-1==I1-	
44 M	D_INT_	16:Y₩45	000032	EMG_STOP	(SBR3~	网络	1	-I==II-	
45 M	D_INT_	16:Y₩45	000032	MCP_NCK	(SBR38)	网络	6	-l==Il-	
交叉参	考		行	31,列:	1			L	
								888 805	
PLC	P	LC	状 态		窗	口1	窗口2		交叉
信息	- t	た态	列表		OB1		SBRØ		参考

图 13-14 对照主菜单(绝对值)

SIMATIC LAD	MAIN(B1)				abs	;	O	
YD25002000									
单元			模块		地址		状态		
16 VD250	02000		TURRET1	(SBR46)	网络	1	-1>=D1-		
17 VD2500	02000		TURRET1	(SBR46)	网络	4	- I ==D I -		
18 VD2500	02000		TURRET1	(SBR46)	网络	5	MOY_DW		符号
19 VD2500	02000		TURRET2	(SBR47)	网络	1	- I ==D I -		地址
20 VD2500	02000		TURRET2	(SBR47)	网络	1	-1>=D1-		
21 VD2500	02000		TURRET2	(SBR47)	网络	3	MOY_DW		在窗口1
22 VD2500	02000		TURRET2	(SBR47)	网络	7	-1>=D1-		打井
23 VD2500	06000		SIMUL_IN	IT (SBR~	网络	1	-I==RI-		左密□2
24 VD2500	96000		SIMUL_IN	IT (SBR~	网络	2	-I==RI-		
25 VD2500	06000		SIMUL_IN	IT (SBR~	网络	3	-1==R1-		11 11
26 79450	00032		MAIN (OE	31)	网络	2	MCP_802D		抽壶
27 994500	00032		PLC_INI	(SBR32)	网络	2	- ==I -		技示
28 794500	00032		PLC_INI	(SBR32)	网络	2	- ==I -		
29 79450	00032		PLC_INI	(SBR32)	网络	2	- ==I -		
30 704500	00032		PLC_INI	(SBR32)	网络	3	- ==I -		
交叉参考		行	16,列	1				-	
1							RCS	è	
PLC	PLC	状 态		窗	口1	窗口2			交叉
信息	状 态	列表		OB1		SBRØ			参考

图 13-15 对照主菜单(符号)

打开 载窗口 1 中

可以使用功能"在窗口1中打开"或"在窗口2中打开"在窗口1/2中直接在相应的程序位置处打开。

符号 地址

使用该软键可以在操作数的绝对值显示和符号显示之间进行切换。 软键名称也相应的发生改变。

按照所选的表示方式,以绝对值或符号形式显示操作数。

13.2 操作选项

如果名称没有符号形式,则自动以绝对值方式书写。

显示方式显示在窗口状态栏的右上方(例如"绝对")。标准情况下显示绝对值。

示例:

在程序段 OB1、网络 2 中显示绝对值操作数 M251.0 的逻辑关系。

在对照表中选定操作数后,按下软键"在窗口1中打开",则相应的程序段会显示在窗口 1中。

SIMATIC LAD MAIN(OB1)		符号	<u>u</u>
ZER0:M251.0			
单元	模块 地址	: 状态	
1385 ZER0 : M251 . 0	MAIN (OB1) 网络	5 AXIS_CTL	
1386 ZER0:M251.0	EMG_STOP (SBR3~网络	7 -(R)	
1387 MCP_DEFECT: M251.7	EMG_STOP (SBR3~网络	2 -1 1-	绝对
1388 MCP_DEFECT:M251.7	MCP_802D (SBR3~网络	10 -()	地址
1389 NULL_b:M255.7	MAIN (OB1) 网络	5 AXIS_CTL	
1390 NULL_b: M255.7	MAIN (OB1) 网络	5 AXIS_CTL	
1391 NULL_b:M255.7	MAIN (OB1) 网络	5 AXIS_CTL	II T
1392 NULL_b: M255.7	MAIN (OB1) 网络	5 AXIS_CTL	→ 在窗口2
1393 C24	LUBRICAT (SBR4~网络	3 MOY_W	■ 打 开
1394 C24	LUBRICAT (SBR4~网络	4 CTU	
1395 C24	LUBRICAT (SBR4~网络	5 -1 1-	搜索
1396 C24	LUBRICAT (SBR4~网络	6 -1 1-	17 14
1397 F0V_P0S:C25	MCP_SIMU (SBR3~网络	3 MOY_W	264 2±
1398 F0V_P0S:C25	MCP_SIMU (SBR3~网络	4 CTUD	地 兴 埔 壶
1399 F0Y_P05:C25	MCP_SIMU (SBR3~网络	6 - >=I -	1支 赤
交叉参考 行	1385,列 1		
1		Res	Ê
PLC PLC 状态	窗 口1	窗口2	交叉
信息 状态 列表	OB1	SBRØ	- 参考

图 13-16 光标 M251.0,在 OB1 网络 2 中

打开 载窗口 1 中

交叉 参考

图 13-17 窗口 1 中的 M251.0,在 OB1、网络 2 中

13.2 操作选项

搜索

在对照表中查找操作数(见下图)。

可以使用整个单词(名称)来查找操作数。 查找时忽略字母的大小写区别。

查找选项:

- 查找绝对值或符号显示的操作数
- 查找行

查找标准:

- (从当前光标位置)向下
- 整个程序段(从程序开端)

SIMATIC LAD	MAIN(OB1)			符号	<u>0</u>	
P_C_TFUNC: VD2	5002000					
单元		模块	地址	状	态 🗌	
16 P_C_TFU		THODE T4 (C		- I	>=D -	
17 P_C_TFU	搜索/全				I==DI-	
18 P_C_TFU	搜索操作数			U MC	JY_D₩	
19 P_C_TFU	搜索:	M251.0			I==DI-	
20 P_C_TFU				-	>=D -	
21 P_C_TFU	搜索全部			<u>о</u> мс	JY_D₩	
22 P_C_TFU	位敕词押奏				>=D -	
23 P_C_HFU	以正则这赤				I==RI-	
24 P_C_HFU					I==RI-	
25 P_C_HFU	NC1: YD25006000	SIMUL_INT	(SBR~网络	3 -	I==RI-	
26 MD_INT_	16: 4045000032	MAIN (OB1)	网络	2 MC	CP_802D	
27 MD_INT_	16:7045000032	PLC_INI (S	BR32)网络	2 -	==I -	
28 MD_INT_	16: 4045000032	PLC_INI (S	BR32)网络	2 -	==I -	
29 MD_INT_	16: 445000032	PLC_INI (S	BR32)网络	2 -	==I -	X
30 MD_INT_	16:\\\45000032	PLC_INI (S	BR32)网络	3 -	==I -	甲断
交叉参考	行	16,列 1				1
					RCS R	确认
PLC PL	LC 状态		窗 口1	窗口2		交叉
信息 壮	た态 列表		0B1	SBRØ		参考

图 13-18 在对照表中查找操作数

所要查找的文本会显示在提示行中。如未找到文本,将会出现相应的错误信息,必须用 "确定"键进行确认。

A

附件

A.1 用户数据

在磨削循环内部对用户数据进行处理。它们被当作定义文件存放在控制器的程序管理器中(在目录 \DEF 中),无论系统断电和通电都将一直保留。

用户数据说明

定义文件中所包含的参数,其说明如下:

名称	类型	默认值	说明			
_GC_LERF	REAL		在调试时检测的纵向位置			
_GC_LVER	REAL		采集纵向位置时的偏移			
_GC_LNPVZ	REAL		校准时 Z 轴上的原始零点偏移			
_GC_LXPOS	REAL		采集纵向位置时的 X 轴位置			
_GC_PARR[20]	REAL		循环间或者循环与 HMI 之间的通讯参数,实数型			
_GC_PAR[0]	INT	0/1	选择插入进给的方式,以毫米/分钟为单位/专用切削量			
_GC_PAR[1]	INT	0/1	选择纵向磨削进给率,以毫米/分钟/毫米/转为单位。			
_GC_PARI[20]	INT		循环间或者循环与 HMI 之间的通讯参数,整数型			
_GC_SYNC	INT	0	HMI 的同步参数			
_GC_SYNC INIRE	INT	0	在复位时删除同步参数			
_GC_WPC	INT	0	用于修整时间间隔的工件计数器			
_GC_BAXIS	STRING[1		旋转轴名称			
	0]					
_GC_DNUM	INT	7	用于刀具补偿中修整数据第1个数据段的D号			
_GC_KNVX	INT	0	其中定义了,如何计算 X 轴上所测出的偏移:			
			0 通过零偏(NV)			
			1 作为砂轮直径偏移			

附件

A.1 用户数据

名称	类型	默认值	说明
_GC_KORR	INT	0	选择测量控制器补偿计算:
			0 补偿由于砂轮/修整器磨损而导致的设定值与实际值偏差
			1补偿由于 X 轴上零点偏移而导致的设定值与实际值偏差
			2不补偿设定值与实际值偏差
_GC_MF[20]	INT		M 指令的编号
_GC_MF[0]	INT	3	磨削主轴的旋转方向 (M3)
_GC_MF[1]		21	向内摆动测量控制器 (M21)
_GC_MF[2]		22	向外摆动测量控制器 (M22)
_GC_MF[3]		33	接通机械振动传感装置 (M33)
_GC_MF[4]		34	关闭机械振动传感装置 (M34)
_GC_MF[5]		41	修整器向前 (M41)
_GC_MF[6]		42	修整器退回 (M42)
_GC_MF[7]		65	向外摆动测量探头 (M65)
_GC_MF[8]		66	向内摆动测量探头 (M66)
_GC_MF[9]		80	释放手轮 (M80)
_GC_MF[10]		81	禁止手轮 (M81)
_GC_MF[11]		4	工件主轴的旋转方向 (M4)
_GC_MF[12] .		7	打开冷却液 (M7)
_GC_MF[13]		9	关闭冷却液 (M9)
_GC_MF[14]			程序控制,向内摆动测量控制器 (M23)
_GC_MF[15]			程序控制,向外摆动测量控制器 (M24)
_GC_MF[16]			没有纵向移动时禁止冲程返回 (M27)
_GC_MF[17]			纵向移动时释放冲程返回 (M28)
			输入 IN 的编号:
_GC_IN_KS	INT	16	声音发射传感器
_GC_IN_MZ0	INT	9	测量控制器返回
_GC_IN_MZ1	INT	10	测量控制器限时
_GC_IN_MZ2	INT	11	测量控制器精密加工转换
_GC_IN_MZ3	INT	12	测量控制器精加工转换
_GC_IN_MZ4	INT	13	保留,用于输入/输出
_GC_IN_ABR	INT	14	中间修整按键
_GC_IN_HAND	INT	15	手轮按键
_GC_IN_BREAK	INT	13	程序中断按键
A.1 用户数据

名称	类型	默认值	说明
_GC_IN_HUB	INT	12	冲程返回按键
_GC_IN_FEEDSTO P	INT	11	横向进给停止按键
_GC_WEARTYP	INT	0	选择磨损补偿,比较或额定尺寸
_GC_SSTAT	INT		选择 磨削主轴带有/不带监控
_GC_FEIN[2]	REAL		全局精细补偿
_GC_FEIN[0] _GC_FEIN[1]	REAL		X 轴精细补偿,增量式 Z 轴精细补偿,增量式
_GC_SFEIN[10,2]	REAL		位置专用的精细补偿 第 1 索引 位置编号 第 2 索引轴
_GC_RLZTYP	INT	0	-1 时不返回 Z 轴的回程位置, MCS=0 WCS=1
_GC_RLXTYP	INT	0	回程位置的类型
_GC_RLX	REAL		X 轴回程位置,通过机床专用的回程位置可以不碰撞修整器 或工件。
_GC_RLZ	REAL		Z 轴回程位置,通过机床专用的回程位置可以不碰撞修整器 或工件。
_GC_BT	REAL		测量控制器的公差范围,在此范围内等待一个测量控制器信 号。
_GC_FWEG	REAL		砂轮(测量控制器)的空运行路径
_GC_SEARCHS			底座再磨削的变量由循环分析,并通过单个底座的程序段搜 索测定。
_GC_SEARCH			底座再磨削的变量由循环分析,并通过单个底座的程序段搜 索测定。
_GC_SEARCHSET			底座再磨削的变量由循环分析,从而可以重新校准轴。
_GC_SEACRHVAL UE[02]			再磨削的校准值
_GC_SUGFEED			与基本系统无关
			0 = SUG,单位 m/s
			1 = SUG,单位 Feed/min

A.1 用户数据

名称	类型	默认值	说明
_GC_MF[18]			使能 CYCLE448 的编程界面退出
_GC_MF[19			禁用和复位上一编程界面退出

注意

由机床制造商检查缺省保存值并与机床的实际情况进行匹配。

A.2 刀具数据的参数列表

下列参数可以用于刀具补偿,由 HMI 对其进行操作。

表格 A-1 砂轮数据, x=[1...n] y=[1...6]

TPG1	INT	主轴号码
TPG2	INT	链接规则 = 0
TPG3	REAL	最小砂轮直径
TPG4	REAL	最小砂轮宽度
TPG5	REAL	当前的砂轮宽度
TPG6	REAL	最大转速
TPG7	REAL	最大 SUG
TPG8	REAL	斜砂轮的角度
TPG9	INT	半径计算的参数号码
TPC1	REAL	砂轮类型 (平形、斜面、自由)
TPC2	REAL	凸度
TPC3	REAL	退刀值
TPC4	REAL	圆柱体补偿
TPC5	REAL	SUG
TPC6	REAL	SUG 比例
TPC7	REAL	绕行方案(障碍物直径)
TPC8	REAL	用于修整器补偿的基本刀沿
TPC9	REAL	X 偏移
TPC10	REAL	Z 偏移
	TPG1 TPG2 TPG3 TPG4 TPG5 TPG6 TPG7 TPG8 TPG9 TPC1 TPC3 TPC4 TPC5 TPC6 TPC7 TPC8 TPC7 TPC8 TPC7 TPC8 TPC9 TPC10	TPG1 INT TPG2 INT TPG3 REAL TPG4 REAL TPG5 REAL TPG6 REAL TPG7 REAL TPG9 INT TPG9 INT TPG1 REAL TPG9 INT TPC1 REAL TPC2 REAL TPC3 REAL TPC4 REAL TPC5 REAL TPC6 REAL TPC7 REAL TPC8 REAL TPC9 REAL TPC3 REAL TPC4 REAL TPC5 REAL TPC6 REAL TPC7 REAL TPC8 REAL TPC9 REAL

表格 A-2 砂轮左侧/右侧轮边上的第 1 刀沿和第 2 刀沿

Tx Dy	DP1	INT	刀具类型 =403
Tx Dy	DP2	INT	刀沿位置 (19)
Tx Dy	DP3	REAL	D-新砂轮的直径

Tx Dy	DP4	REAL	L - 砂轮参考点的距离
Tx Dy	DP5	REAL	(预留长度 3)
Tx Dy	DP6	REAL	R -刀沿半径
Tx Dy	DP7	REAL	修整量(微米)左/右
Tx Dy	DP8	REAL	修整器磨损 X (微米) 左/右
Tx Dy	DP9	REAL	修整器磨损 Z (微米) 左/右
Tx Dy	DP10	REAL	轨迹进给率 (毫米/转) 左/右
Tx Dy	DP11	REAL	进给率 X (毫米/转) 左/右
Tx Dy	DP12	REAL	dD - 修改直径(修整量 X)
Tx Dy	DP13	REAL	dL - 修改距离(修整量 Z)
Tx Dy	DP14	REAL	(长度 3)
Tx Dy	DP15	REAL	dR - 修改砂轮半径 (半径磨损)
Tx Dy	DP16	REAL	修整量(微米)直径
Tx Dy	DP17	REAL	修整器磨损 X (微米) 直径
Tx Dy	DP18	REAL	修整器磨损 Z (微米) 直径
Tx Dy	DP19	REAL	修整方向 拉/推 直径
Tx Dy	DP20	REAL	进给率 (毫米/转) 直径
Tx Dy	DP21	REAL	X 轴上的附加补偿, 直径, 基本尺寸,
Tx Dy	DP22	REAL	Z 轴上的附加补偿, Z 轴上的长度,基本尺寸,
Tx Dy	DP23	REAL	(预留长度 3)
Tx Dy	DP24	REAL	测量控制器的直径补偿或刀沿 1-6 的预设尺寸
Tx Dy	DP25	REAL	测量控制器的 Z 补偿或各个刀沿的预设尺寸
Tx Dy	DPC1	REAL	
Tx Dy	DPC2	REAL	半径 左/右
Tx Dy	DPC3	REAL	★ 倒角 左/右
Tx Dy	DPC4	REAL	Z 倒角 左/右
Tx Dy	DPC5	REAL	台面高度 左/右
Tx Dy	DPC6	REAL	后拉角度 左/右
Tx Dy	DPC7	REAL	后拉高度 左/右

A.2 刀具数据的参数列表

Tx Dy	DPC8	REAL	溢出 X
Tx Dy	DPC9	REAL	可用砂轮宽度
Tx Dy	DPC10	REAL	轮廓程序号

表格 A-3 3. 用于砂轮的第 3 刀沿

Tx Dy	DP1	INT	刀具类型 =403
Tx Dy	DP2	INT	刀沿位置 (19)
Tx Dy	DP3	REAL	D-新砂轮的直径
Tx Dy	DP4	REAL	L - 砂轮参考点的距离
Tx Dy	DP5	REAL	(预留长度 3)
Tx Dy	DP6	REAL	R -刀沿半径
Tx Dy	DP7	REAL	碾压旋转
Tx Dy	DP8	REAL	成型辊的插入进给率(砂轮类型 5 和 6)
Tx Dy	DP9	REAL	成型辊的修整进给率 (砂轮类型 5 和 6)
Tx Dy	DP10	REAL	成型辊 SUG (砂轮类型 5 和 6)
Tx Dy	DP11	REAL	成型辊 SUG 比例 (砂轮类型 5 和 6)
Tx Dy	DP12	REAL	dD - 修改直径(修整量 X)
Tx Dy	DP13	REAL	dL - 修改距离(修整量 Z)
Tx Dy	DP14	REAL	(长度 3)
Tx Dy	DP15	REAL	dR - 修改砂轮半径 (半径磨损)
Tx Dy	DP16	REAL	成型辊的修整编号 (砂轮类型 5 和 6)
Tx Dy	DP17	REAL	备用
Tx Dy	DP18	REAL	备用
Tx Dy	DP19	REAL	备用
Tx Dy	DP20	REAL	备用
Tx Dy	DP21	REAL	X 轴上的附加补偿,直径,基本尺寸,
Tx Dy	DP22	REAL	Z 轴上的附加补偿, Z 轴上的长度, 基本尺寸,
Tx Dy	DP23	REAL	(预留长度 3)
Tx Dy	DP24	REAL	备用

Tx Dy	DP25	REAL	备用
Tx Dy	DPC1	REAL	轨迹修整时的空冲程
Tx Dy	DPC2	REAL	备用
Tx Dy	DPC3	REAL	备用
Tx Dy	DPC4	REAL	备用
Tx Dy	DPC5	REAL	备用
Tx Dy	DPC6	REAL	备用
Tx Dy	DPC7	REAL	备用
Tx Dy	DPC8	REAL	备用
Tx Dy	DPC9	REAL	备用
Tx Dy	DPC10	REAL	备用

Tx Dy	DP1	INT	刀具类型 =403
Tx Dy	DP2	INT	刀沿位置 (19)
Tx Dy	DP3	REAL	D-新砂轮的直径
Tx Dy	DP4	REAL	L-砂轮参考点的距离
Tx Dy	DP5	REAL	(预留长度 3)
Tx Dy	DP6	REAL	R -刀沿半径
Tx Dy	DP7	REAL	备用
Tx Dy	DP8	REAL	备用
Tx Dy	DP9	REAL	备用
Tx Dy	DP10	REAL	备用
Tx Dy	DP11	REAL	备用
Tx Dy	DP12	REAL	dD - 修改直径(修整量 X)
Tx Dy	DP13	REAL	dL - 修改距离(修整量 Z)
Tx Dy	DP14	REAL	(长度 3)
Tx Dy	DP15	REAL	dR - 修改砂轮半径 (半径磨损)
Tx Dy	DP16	REAL	备用
Tx Dy	DP17	REAL	备用
Tx Dy	DP18	REAL	备用
Tx Dy	DP19	REAL	备用
Tx Dy	DP20	REAL	备用
Tx Dy	DP21	REAL	X 轴上的附加补偿,直径,基本尺寸,
Tx Dy	DP22	REAL	Z 轴上的附加补偿, Z 轴上的长度, 基本尺寸,
Tx Dy	DP23	REAL	(预留长度 3)
Tx Dy	DP24	REAL	备用
Tx Dy	DP25	REAL	备用
Tx Dy	DPC1	REAL	备用
Tx Dy	DPC2	REAL	备用
Tx Dy	DPC3	REAL	备用

表格 A-4 4. 用于磨削砂轮的刀沿 4 至 6

Tx Dy	DPC4	REAL	备用
Tx Dy	DPC5	REAL	备用
Tx Dy	DPC6	REAL	备用
Tx Dy	DPC7	REAL	备用
Tx Dy	DPC8	REAL	备用
Tx Dy	DPC9	REAL	备用
Tx Dy	DPC10	REAL	备用

A.2 刀具数据的参数列表

Tx Dy	DP1	INT	刀具类型 =403
Tx Dy	DP2	INT	刀沿位置 (19)
Tx Dy	DP3	REAL	位置
Tx Dy	DP4	REAL	位置
Tx Dy	DP5	REAL	位置
Tx Dy	DP6	REAL	R-刀沿半径
Tx Dy	DP7	REAL	直径
Tx Dy	DP8	REAL	宽度
Tx Dy	DP9	REAL	最大的圆周速度
Tx Dy	DP10	REAL	最大的转速
Tx Dy	DP11	REAL	接触数据程序段
Tx Dy	DP12	REAL	dD - 修改直径(修整量 X)
Tx Dy	DP13	REAL	dL - 修改距离(修整量 Z)
Tx Dy	DP14	REAL	(长度 3)
Tx Dy	DP15	REAL	dR - 修改砂轮半径 (半径磨损)
Tx Dy	DP16	REAL	辊子的圆周速度
Tx Dy	DP17	REAL	长度1的最大磨损量
Tx Dy	DP18	REAL	长度2的最大磨损量
Tx Dy	DP19	REAL	长度3的最大磨损量
Tx Dy	DP20	REAL	辊子的旋转方向,可选
Tx Dy	DP21	REAL	X 轴上的附加补偿,直径,基本尺寸,
Tx Dy	DP22	REAL	Z 轴上的附加补偿, Z 轴上的长度, 基本尺寸,
Tx Dy	DP23	REAL	(预留长度 3)
Tx Dy	DP24	REAL	摆动行程 Z
Tx Dy	DP25	REAL	每个冲程的进给量
Tx Dy	DPC1	REAL	摆动速度
Tx Dy	DPC2	REAL	退刀值
Tx Dy	DPC3	REAL	返回距离

表格 A-5 用于修整器的刀沿 7 至 9

A.2 刀具数据的参数列表

Tx Dy	DPC4	REAL	X 启动
Tx Dy	DPC5	REAL	Z 启动
Tx Dy	DPC6	REAL	修整器类型 (0-X/Z, >0 后置, 旋转)
Tx Dy	DPC7	REAL	成型深度
Tx Dy	DPC8	REAL	安全速度
Tx Dy	DPC9	REAL	摆动行程 X
Tx Dy	DPC10	REAL	备用

此外对于刀具数据(刀具类型、刀沿位置、...)的标准编码还可以使用下列编码参数。

编码	砂轮类型 \$TC_TPC1[T]
0	任意轮廓
1	无后拉的垂直标准轮廓
2	带有后拉的垂直标准轮廓
3	左斜标准轮廓
4	右斜标准轮廓
5	带几何轴的成型辊垂直标准轮廓

编码	直径上的修整方式 \$TC_DP19[T,1]
0	无拉力也无推力(第3修整器)
1	后拉(上一有效修整器)
2	前推(上一有效修整器)
11	后拉(第 1 修整器)
12	前推(第 1 修整器)
21	后拉(第2修整器)
22	前推(第2修整器)

编码	修整器类型 \$TC_DPC6[T,_GC_DNUM+修整器-1]
0	修整器几何轴(金刚石)不旋转
1	修整器几何轴(金刚石)不旋转
11	修整器几何轴(成型辊)旋转
12	修整器几何轴(成型辊)旋转
21	修整器几何轴(金刚石)旋转

A.3 其它

A.3 其它

A.3.1 计算器

=

在每个操作区域中都可以同时按下<SHIFT>和<=>键或<CTRL>和<A>键来激活计算器功能。

利用计算器可以行基本的四则运算,以及进行正弦、余弦、平方和开方运算。此外,也可以进行括弧运算。括弧级数不受限制。

如果输入栏已经有一个数值,则该功能接收该数值到计算器的输入行。

按下<Input>键开始计算。结果显示在计算器中。

按下软键"接收",把计算结果送到输入栏或者零件程序光标所在的位置处,计算器随后自动关闭。

说明

如果输入栏处于编辑状态,可以按下转换键返回到初始状态。

输入时可以使用下列符号

- +,-,*,/ 基本运算
- S 正弦功能 计算输入光标前的值 X (单位:度)的正弦值 sin(X)。
 O 余弦功能 计算输入光标前的值 X (单位:度)的正弦值 cos(X)。
- Q 平方功能 计算输入光标前的值 X 的平方值 X²。
- R 开方功能 计算输入光标前的值 X 的平方根值 √X。
- () 括弧功能 (X+Y)*Z

计算举例

任务	输入-> 结果
100 + (67*3)	100+67*3 -> 301
sin(45_)	45 S -> 0.707107
cos(45_)	45 O -> 0.707107
42	4 Q -> 16
√4	4 R -> 2
(34+3*2)*10	(34+3*2)*10 -> 400

在计算轮廓辅助点时,计算器具有如下功能:

- 计算圆弧和直线间的切线过渡
- 在平面上移动一个点
- 极坐标转换为直角坐标
- 确定和一直线成特定角度的另一直线的终点

A.3 其它

A.3.2 编辑亚洲字符

在程序编辑器和 PLC 报警文本编辑器中可以编辑亚洲字符。 该功能提供以下亚洲语言:

- 简体中文
- 繁体中文
- 韩语

按下<Alt+S>键打开或者关闭编辑器。

简体/繁体中文

通过拼音选择字符,拼音由拉丁字母组成。

作为结果,编辑器显示一系列该拼音的字符。

最后选择需要的字符。

使用切换栏"功能选择"可以在拼音输入法和拉丁字符输入之间切换,并可以激活此功能编 辑字典。

如果选择了某字符,则编辑器根据拼音保存其选择频率,在重新打开编辑器后优先显示常用字符。

图 A-4 学习功能生效的编辑器结构

• 编辑字典

如果激活了该功能,则另外显示由字符和其拼音的组成的一行文本。

编辑器根据此发音提供不同的字符,键入相应的数字(1...9)可以选择所需的字符。

按下<TAB>键可以在拼音栏和拼音输入栏之间切换光标。

如果光标位于上一栏,则操作员可以按下<Backspace>键取消显示的字符组合。

按下<Select>键则保存显示的字符。

按下<Delete>键则从字典删除显示的字符组。

韩语

需要输入韩语字符时,操作员需要使用以下布局的键盘。

此键盘的布局和一个英文 QWERTY 键盘(标准的传统键盘)类似,其中包含的事件必须 归结为音节。

图 A-5 韩语键盘布局

韩语字母表由 24 个字母组成: 14 个辅音和 10 个元音。元音和辅音构成一个音节。

A.3 其它

Ref Point		
프로그램 관리자		새 파일
N:\MPF		작성
이름	크기 KB	AH
		디렉토리
FING MPF	1	
HDFFFFFFFDS.MPF	1	
KOREA_EDITOR.MPF	1	
TMP_MDA.MPF	새 프로그램:	
	이름 입력 !	
	nnog	
	PRUGA	
		-
		×
		입력취소
여유 메모리: 3.17	5.424 Bytes	1
		ОК

图 A-6 标准布局的韩语编辑器

图 A-7 韩语编辑器的结构

• 通过矩阵输入

如果只提供一个控制系统键盘,则除了上面显示的键盘布局外还可以使用矩阵方法, 它只需要使用数字区。

Ref Point		M.
프로그램 관리자		새 파일
N:\MPF		작성
이름	크기 KB	AH
		디렉토리
DIGIT_IU.MPF	1	
HDFFFFFFDS.MPF	1	
KOREA_EDITOR .MPF	1	_
TMP_MDA.MPF	새 프루그램:	
	이름 인력 *	
여유 메모리: 3.17	1234567890 1 HATTAL HE HA 2 LOSES 4111 3 REAL HATAL 4 Mill Matrix	¥ 입력취소 ✔
NC 사용자 R 디렉토리 CF 카드 연	25 RS232 제조자 USB [결 도간이브 드간이브	JOK

图 A-8 带选择矩阵的韩语编辑器

按照如下方式选择字符:

- 选择行 行高亮显示
- 选择列 字符短时高亮显示并接收到"字符"栏中。
- 按下<Input>键将此字符接收到编辑栏中。

A.4 资料反馈

A.4 资料反馈

本资料将在质量及易用性上持续改进。 您的建议和意见可以帮助我们完善,请发邮件或 传真至:

- 电子邮 mailto:docu.motioncontrol@siemens.com 件:
- 传真: +49 9131 98 2176 请使用手册末页的传真样表。

A.4 资料反馈

寄	寄信人
SIEMENS AG	姓名:
Postfach 3180(邮箱 3180)	公司/部门通信地址
│ │D-91050 Erlangen(爱尔兰根)	街道:
	邮编: 城镇:
	电话: /
传真: +49 9131 - 98 2176 (文献资料)	传真: /

建议及/或更正

A.5 文献一览

A.5 文献一览

DOCONCD DOCONWEB

词汇表

GAP/固体传声装置/空气磨削

用安装在机床内的固体传声麦克风连接工件和磨削砂轮。

MCPA

控制系统的快速 I/O 的输入图

MD

机床数据;机床数据是预定义的变量(系统变量),此变量可按机床制造商的要求匹配 NCK 和机床。

SD

设定数据;设定数据是让各种特性的机床了解 NCK 的系统变量。与机床数据相反,对设 定数据的修改可立即生效。

SUG

磨削砂轮圆周速度,单位:米/秒(m/s)

WUG

工件圆周速度,单位为:米/分钟

修整自由轮廓的 XWP/ZWP

将编程的轮廓移至磨削砂轮当前刀沿的工件零点;在工件坐标系中编程自由轮廓时需要。

台面

磨削砂轮或者工件的左侧或者右侧

后拉/后拉角

进行平面磨削的砂轮左侧或右侧成锥形,从而产生交叉磨削。

底座

加工操作台

有效砂轮厚度

进行直径加工的倾斜砂轮的厚度 此厚度取决于:

- 物理厚度
- 后拉高度
- 砂轮角度

索引

C	R
CNC 操作面板(PCU)上的 LED 显示, 14	RCS 工具, 318
	RCS 登录, 329
F	RS232 接口, 335
FA, 315	_
	A 印序矶山与
G	一个程序段中包含多个进给率, 310 一个程序段包含多个进给率, 310
G1. 314	
G4, 313	不
	不可打印的特殊字符, 202
J	
JOG. 64	中
	中断后重新定位, 92, 93
0	
05 212	主
OSCTRI 312 315	主轴转速限制, 310
OSE, 312, 315	
OSNSC, 312	传
OSP, 314	住输退示信息 336
OSP1, 312	ℓ 揃近小市忌, 350 ℓ 輪记录 336
OSP2, 312	
OST, 313	/□
OST1, 312	保
OST2, 312	保护等级, 29
Р	修

PROGRAM MANAGER, 99

修光次数, 313

停	坐
停留时间, 313	坐标系, 19
	工件坐标系(WCS), 21
共	机床坐标系(MCS), 19 相对坐标系 21
共享目录, 332	
-	备
円	备份数据, 110
再磨削, 80, 86	
tin	外
<i>W</i> H 加工 亚西 150	外部执行, 94
加工补偿. 78	
	字
Г	字结构, 198
厂商存档, 146	
	存
参	存取权限, 29
参数表, 161	R
म्	屏幕划分,23
可打印的特殊字符, 202	т
	エ 工作方式 MDL 69
回	
回参考点, 33	帮
左	帮助系统, 30
11.	
在线帘切, 30	<u>म</u>
抛	平面定义, 159
地址 198	

异

异步摆动, **312**

循

循环概述, 155 循环调用, 161

手

手动数据输入,68 手轮,67

接

接口参数, 149

摆

摆动 启动/关闭摆动, 312 定义运动过程, 315 异步摆动, 312 摆动换向点, 314 摆动轴, 314

操

操作区, 35, 37 操作区域, 28, 64 操作和显示单元, 13

故

故障显示, 14

数

数据传输, 335 数控编程基础, 197

文

文件 复制, 341 粘贴, 341

断

断开网络驱动器,333

显

显示区域, 88 显示机床数据, 118

更

更改语言, 110

机

机床数据, 113 显示机床数据, 118 轴专用机床数据, 115 通用机床数据, 114 通道专用机床数据, 116 驱动机床数据, 116

热

热键, 15

状

状态显示, 14

用

用户登录, 329 用户管理, 328

程

程序列表, 144 程序段搜索, 84 程序段结构, 199 程序编辑器的循环支持, 165

符

符号组, 202

网

网络参数,325 网络运行,324 网络连接,325

计

计算参数,60

设

设定数据,56

调

调制解调器, 139 调用, 159 调用条件, 159 轴

轴专用机床数据, 115 轴分配, 159

输

输入刀具, **37**

运

运行方式 JOG, 64

返

返回条件, 159

连

连接网络驱动器, 333

通

通用机床数据, 114 通道专用机床数据, 116

释

释放通讯端口, 326

零

零件程序 停止:中断,91 选择:启动,82

驱

驱动机床数据,116